Asymptotic Homogenization and Fractional Calculus Applied to Micro-heterogeneous Media Modelling: an Introduction with the Case of a Microperiodic and Linear Functionally Graded Rod

Authors

  • Roberto Martins da Silva Décio Júnior Programa de Pós-Graduação em Modelagem Computacional - Universidade Federal de Rio Grande
  • Adriano De Cezaro Instituto de Matemática, Estatística e Física (IMEF) - Universidade Federal do Rio Grande (FURG)
  • Leslie Darien Pérez-Fernández Instituto de Física e Matemática, Universidade Federal de Pelotas (UFPel) https://orcid.org/0000-0002-4452-264X

DOI:

https://doi.org/10.14295/vetor.v32i1.13759

Keywords:

Asymptotic Homogenization, Fractional Calculus, Conformable Derivatives, Functionally Graduated Materials

Abstract

The study of materials with complex structure, like the functionally graded, is a field of increasing interest, what happens mostly because the importance of these materials in the industry. In this work, the Asymptotic Homogenization Method and Fractional Calculus are both applied in a problem which models the behaviour of a micro-heterogeneous material, like the functionally graded. The goal of this work is the study of the association possibilities between these two tools, since which one are providing important results in the mathematical modelling of complex structures. The results show that each methodology reproduce a different aspect of the phenomenon: the Homogenization stays in the microstructure details and the fractional derivative takes care of a macroscopic behaviour, which nature is possibly dissipative. Here are important information, but a deeper and more diverse approach is necessary to provide strong e more general statements about this theme.

Downloads

Download data is not yet available.

References

M. H. Sadd, Elasticity: Theory, applications, and numerics, 4th ed. Waltham: Elsevier Academic Press, 2020. Available at: https://doi.org/10.1016/C2017-0-03720-5

Y. X. Hao, W. Zhang, J. Yang, and S. Li, “Nonlinear dynamics of a functionally graded thin simply-supported plate under a hypersonic flow,” Mechanics of Advanced Materials and Structures, vol. 22, pp. 619–632, 2015. Available at: https://doi.org/10.1080/15376494.2013.828817

S. Fan and Z. Cheng, “A micropolar model for elastic properties in functionally graded materials.” Advances in Mechanical Engineering, vol. 10, no. 8, pp. 1–9, 2018. Available at: https://doi.org/10.1177/1687814018789520

S. Torquato, Random Heterogeneous Materials – microstructure and macroscopic properties. New York: Springer, 2001. Available at: https://link.springer.com/book/10.1007/978-1-4757-6355-3

G. P. Panasenko, “Homogenization for periodic media: from microscale to macroscale,” Physics of Atomic Nuclei, vol. 71, no. 4, pp. 681–694, 2008. Available at: https://doi.org/10.1134/S106377880804008X

N. S. Bakhvalov and G. P. Panasenko, Homogenisation: Averaging Processes in Periodic Media. Dordrecht: Kluwer Academic Publishers, 1989.

R. M. Décio Jr, L. D. Pérez-Fernández, and J. Bravo-Castillero, “Exactness of formal asymptotic solutions of a Dirichlet problem modeling the steady state of functionally-graded microperiodic nonlinear rods,” Journal of Applied Mathematics and Computational Mechanics, vol. 18, no. 3, pp. 45–56, 2019. Available at: https://doi.org/10.17512/jamcm.2019.3.04

L. Wang, W. Tian, Y. Guo, and G. Li, “Effects of CVD carbon on the erosion behaviour of 5d carbon-carbon composite in a solid rocket motor,” Applied Composite Materials, vol. 27, pp. 391–405, 2020. Available at: https://doi.org/10.1007/s10443-020-09820-8

R. Camargo and E. C. Oliveira, Cálculo Fracionário (in Portuguese). São Paulo: Editora Livraria da Física, 2015.

L. Kuroda, M. Horani, A. Gomes, R. Tavoni, P. Mancera, N. Varalta, and R. Camargo, “Unexpected behavior of Caputo fractional derivative,” Computational and Applied Mathematics, vol. 36, pp. 1173–1183, 2017. Available at: https://doi.org/10.1007/s40314-015-0301-9

S. Warbhe, “Fractional heat conduction in a retangular plate with bending moments,” Journal of Applied Mathematics and Computational Mechanics, vol. 19, no. 4, pp. 115–126, 2020. Available at: https://doi.org/10.17512/jamcm.2020.4.10

F. Jarad, E. Uğurlu, T. Abdeljawad, and D. Baleanu, “On a new class of fractional operators,” Advances in Difference Equations, vol. 247, 2017. Available at: https://doi.org/10.1186/s13662-017-1306-z

W. Cai, W. Chen, and W. Xu, “Characterizing the creep of viscoelastic materials by fractal derivative models,” International Journal of Non–Linear Mechanics, vol. 87, pp. 58–63, 2016. Available at: https://doi.org/10.1016/j.ijnonlinmec.2016.10.001

R. Khalil, M. Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” Journal of Computational and Applied Mathematics, vol. 264, pp. 65–70, 2014. Available at: https://doi.org/10.1016/j.cam.2014.01.002

G. Teodoro, J. Machado, and E. Oliveira, “A review of definitions of fractional derivatives and other operators,” Journal of Computational Physics, vol. 388, pp. 195–208, 2019. Available at: https://doi.org/10.1016/j.jcp.2019.03.008

T. Abdeljawad, “On conformable fractional calculus,” Journal of Computational and Applied Mathematics, vol. 279, pp. 57–66, 2015. Available at: https://doi.org/10.1016/j.cam.2014.10.016

R. Burden and J. Faires, Análise Numérica (in Portuguese), 3rd ed. São Paulo: Cengage Learning, 2016.

Downloads

Published

2022-07-15 — Updated on 2022-07-15

Versions

How to Cite

da Silva Décio Júnior, R. M., De Cezaro, A., & Pérez-Fernández, L. D. (2022). Asymptotic Homogenization and Fractional Calculus Applied to Micro-heterogeneous Media Modelling: an Introduction with the Case of a Microperiodic and Linear Functionally Graded Rod. VETOR - Journal of Exact Sciences and Engineering, 32(1), 13–22. https://doi.org/10.14295/vetor.v32i1.13759

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.