IPSAL: Implementation of the module to generate the Sobol sequence and indices

Authors

  • Luiz Felipe Alves Borges Universidade Federal Fluminense
  • Fabio Freitas Ferreira Universidade Federal Fluminense
  • Fábio Gonçalves Universidade Federal Fluminense
  • Antônio Espósito Junior Universidade Federal Fluminense
  • Aline Fernanda da Silva Oliveira Universidade Federal Fluminense
  • Wagner Rambaldi Telles Universidade Federal Fluminense

DOI:

https://doi.org/10.14295/vetor.v33i2.16439

Keywords:

sensitivity analysis, sobol method, unusual operation, parameter correlation

Abstract

Sensitivity and uncertainty analysis hold significant importance across a range of applications, spanning from industrial problems to climate change, financial risk assessment, as well as mathematical and computational models. These analyses involve identifying influential input parameters in models to comprehend their impact on the output. Sensitivity analysis can be performed locally, examining parameter effects at a fixed value, or globally, evaluating the model across a range of parameter values. The Sobol method stands as a robust approach for global sensitivity analysis, employing a Sobol sequence to create samples more uniformly within the input parameter space, thus enabling efficient exploration of model inputs. This paper aims to introduce a computational implementation in Scilab to generate the Sobol sequence for utilization in sensitivity analysis through the Sobol method. A test case was applied to generate Sobol sequences and discuss the obtained results.

Downloads

Download data is not yet available.

References

T. Barbe, “A new algorithm for applications of Sobol sequences to the pricing of financial derivatives (in Portuguese),” Ph.D. dissertation, University of São Paulo, Faculty of Economics, Administration and Accounting, SP, 2005. Available at: https://doi.org/10.11606/T.12.2005.tde-14122022-095219

F. F. Ferreira, A. J. da Silva Neto, G. B. Lyra, and S. P. de Queiroz, “van Genuchten sensitivity analysis by Morris method,” in Anais do XXIII Encontro Nacional de Modelagem Computacional. Palmas, Brazil: ISSN: 2527-2357, 2020. Available at: http://enmc.ccam.uesc.br/

F. Ferretti, A. Saltelli, and S. Tarantola, “Trends in sensitivity analysis practice in the last decade,” Science of The Total Environment, vol. 568, pp. 666–670, 2016. Available at: https://doi.org/10.1016/j.scitotenv.2016.02.133

D. M. Hamby, “A review of techniques for parameter sensitivity analysis of environmental models,” Environmental Monitoring and Assessment, vol. 32, pp. 135–154, 1994. Available at: https://doi.org/10.1007/BF00547132

I. M. Sobol, “Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates,” Mathematics and Computers in Simulation, no. 55, pp. 271–280, 2001. Available at: https://doi.org/10.1016/S0378-4754(00)00270-6

D. P. Kroese and R. Y. Rubinsteino, “Monte Carlo methods,” Wires Computational Statistics, vol. 4, no. 1, pp. 48–58, 2012. Available at: https://doi.org/10.1002/wics.194

S. Joe and F. Y. Kuo, “Constructing Sobol sequences with better two-dimensional projections,” SIAM Journal on Scientific Computing, vol. 30, no. 5, pp. 2635–2654, 2008. Available at: https://doi.org/10.1137/070709359

D. Kumar, A. Singh, P. Kumar, R. K. Jha, S. K. Sahoo, and V. Jha, “Sobol sensitivity analysis for risk assessment of uranium in groundwater,” Environmental Geochemistry and Health, vol. 6, no. 42, pp. 1789–1801, 2020. Available at: https://doi.org/10.1007/s10653-020-00522-5

J. Nossent, P. Elsen, and W. Bauwens, “Sobol sensitivity analysis of a complex environmental model,” Environmental Modelling and Software, vol. 26, no. 12, pp. 1515–1525, 2011. Available at: https://doi.org/10.1016/j.envsoft.2011.08.010

K. F. Rocha, “Unusual numerical bases: A brief study (in portuguese),” Master’s thesis, Federal University of Grande Dourados, Professional master’s degree in mathematics, MS, Mato Grosso do Sul, Brazil, 2019. Available at: http://repositorio.ufgd.edu.br/jspui/handle/prefix/1375

A. Navid, S. Khalilarya, and M. Abbasi, “Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process,” Fuel, vol. 228, pp. 349–367, 2018. Available at: https://doi.org/10.1016/j.fuel.2018.04.142

Downloads

Published

2023-12-23

How to Cite

Alves Borges, L. F. ., Freitas Ferreira, F., Gonçalves, F. ., Espósito Junior, A. ., da Silva Oliveira, A. F. ., & Rambaldi Telles, W. . (2023). IPSAL: Implementation of the module to generate the Sobol sequence and indices. VETOR - Journal of Exact Sciences and Engineering, 33(2), 60–69. https://doi.org/10.14295/vetor.v33i2.16439

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.