Um Novo Método Simultâneo de Sexta Ordem Tipo Ehrlich para Zeros Polinomiais Complexos

Autores

DOI:

https://doi.org/10.14295/vetor.v33i2.16434

Palavras-chave:

Zeros de polinômios, Métodos iterativos simultâneos, Método de Ehrlich, Método de Li de quarta ordem

Resumo

Este artigo apresenta um novo método iterativo para a determinação simultânea de zeros polinomiais simples. O~método proposto é obtido a partir da combinação da iteração de Ehrlich de terceira ordem com uma correção iterativa derivada do método de Li de quarta ordem para a resolução de equações não lineares. O método combinado desenvolvido tem ordem de convergência seis. Alguns exemplos são apresentados para ilustrar a convergência e eficiência do método tipo Ehrlich com correção de Li proposto para a aproximação simultânea de zeros polinomiais.

Downloads

Não há dados estatísticos.

Referências

V. Y. Pan, “Old and new nearly optimal polynomial root-finders,” in Computer Algebra in Scientific Computing, M. England, W. Koepf, T. M. Sadykov, W. M. Seiler, and E. V. Vorozhtsov, Eds. Cham, Switzerland: Springer, 2019, pp. 393–411.

N. Rafiq, M. Shams, N. A. Mir, and Y. U. Gaba, “A highly efficient computer method for solving polynomial equations appearing in engineering problems,” Mathematical Problems in Engineering, vol. 2021, 9826693, 2021. Available at: https://doi.org/10.1155/2021/9826693

P. Henrici, “Uniformly convergent algorithms for the simultaneous determination of all zeros of a polynomial,” in Numerical Solution of Nonlinear Problems, J. M. Ortega and W. C. Rheinboldt, Eds. Philadelphia, PA: SIAM, 1970, pp. 1–8.

J. H. Wilkinson, “The evaluation of the zeros of ill-conditioned polynomials. Part I,” Numerische Mathematik, vol. 1, no. 1, pp. 150–166, 1959. Available at: https://doi.org/10.1007/BF01386381

J. H. Wilkinson, Rounding Errors in Algebraic Processes. Englewood Cliffs, NJ: Prentice-Hall, 1963.

F. S. Acton, Numerical Methods that Work. Washington, DC: Mathematical Association of America, 1990.

A. Neumaier, Introduction to Numerical Analysis. Cambridge, UK: Cambridge University Press, 2001.

J. H. Wilkinson, “The perfidious polynomial,” in Studies in Numerical Analysis, G. H. Golub, Ed. Washington, DC: Mathematical Association of America, 1984, pp. 1–28.

O. Aberth, “Iteration methods for finding all zeros of a polynomial simultaneously,” Mathematics of Computation, vol. 27, no. 122, pp. 339–344, 1973. Available at: https://doi.org/10.1090/S0025-5718-1973-0329236-7

L. W. Ehrlich, “A modified Newton method for polynomials,” Communications of the ACM, vol. 10, no. 2, pp. 107–108, 1967. Available at: https://doi.org/10.1145/363067.363115

S. Li, “Fourth-order iterative method without calculating the higher derivatives for nonlinear equation,” Journal of Algorithms & Computational Technology, vol. 13, pp. 1–8, 2019. Available at: https://doi.org/10.1177/1748302619887686

H. J. Maehly, “Zur iterativen Auflösung algebraischer Gleichungen,” Zeitschrift für Angewandte Mathematik und Physik, vol. 5, no. 3, pp. 260–263, 1954. Available at: https://doi.org/10.1007/BF01600333

W. Börsch-Supan, “A posteriori error bounds for the zeros of polynomials,” Numerische Mathematik, vol. 5, no. 1, pp. 380–398, 1963. Available at: https://doi.org/10.1007/BF01385904

K. Dochev and P. Byrnev, “Certain modifications of Newton’s method for the approximate solution of algebraic equations,” U.S.S.R. Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 174–182, 1964. Available at: https://doi.org/10.1016/0041-5553(64)90148-X

F. Weißenhorn, “Ein Beitrag zur Bestimmung der Nullstellen aus einer Polynom in Summenform und aus der Summe von Polynomen in Produktform,” Archiv für Elektronik und Übertragungstechnik, vol. 24, pp. 372–378, 1970.

M. R. Farmer and G. Loizou, “A class of iteration functions for improving, simultaneously, approximations to the zeros of a polynomial,” BIT, vol. 15, no. 3, pp. 250–258, 1975. Available at: https://doi.org/10.1007/BF01933657

G. Alefeld and J. Herzberger, “On the convergence speed of some algorithms for the simultaneous approximation of polynomial roots,” SIAM Journal of Numerical Analysis, vol. 11, no. 2, pp. 237–243, 1974. Available at: https://doi.org/10.1137/0711023

H. T. Kung and J. F. Traub, “Optimal order of one-point and multipoint iteration,” Journal of the ACM, vol. 21, no. 4, pp. 643–651, 1974. Available at: https://doi.org/10.1145/321850.321860

H. Guggenheimer, “Bounds for roots of algebraic equations,” Archiv der Mathematik, vol. 31, no. 6, pp. 568–569, 1978. Available at: https://doi.org/10.1007/BF01226493

D. A. Bini, “Numerical computation of polynomial zeros by means of Aberth’s method,” Numerical Algorithms, vol. 13, no. 2, pp. 179–200, 1996. Available at: https://doi.org/10.1007/BF02207694

M. Petković and L. Stefanović, “On the convergence order of accelerated root iterations,” Numerische Mathematik, vol. 44, no. 3, pp. 463–476, 1984. Available at: https://doi.org/10.1007/BF01405575

M. S. Petković and L. V. Stefanović, “On the simultaneous method of the second order for finding polynomial complex zeros in circular arithmetic,” Freiburg im Breisgau, F.R.G., Freiburger Interval-Berichte 85/3, 63–95, 1985.

I. Gargantini, “Parallel Laguerre iterations: the complex case,” Numerische Mathematik, vol. 26, no. 3, pp. 317–323, 1976. Available at: https://doi.org/10.1007/BF01395948

P. D. Proinov and M. T. Vasileva, “On the convergence of high-order Ehrlich-type iterative methods for approximating all zeros of a polynomial simultaneously,” Journal of Inequalities and Applications, vol. 2015, 336, 2015. Available at: https://doi.org/10.1186/s13660-015-0855-5

P. D. Proinov and M. T. Vasileva, “A new family of high-order Ehrlich-type iterative methods,” Mathematics, vol. 9, no. 16, 1855, 2021. Available at: https://doi.org/10.3390/math9161855

H. Zhang, “Numerical condition of polynomials in different forms,” Electronic Transactions on Numerical Analysis, vol. 12, pp. 66–87, 2001. Available at: http://eudml.org/doc/121427

J. D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference. Boca Raton, FL: Chapman & Hall/CRC, 2010.

Downloads

Publicado

2023-12-23

Como Citar

Guerreiro Lopes, L., & Neves Machado, R. (2023). Um Novo Método Simultâneo de Sexta Ordem Tipo Ehrlich para Zeros Polinomiais Complexos. VETOR - Revista De Ciências Exatas E Engenharias, 33(2), 52–59. https://doi.org/10.14295/vetor.v33i2.16434

Edição

Seção

Artigos

Artigos Semelhantes

<< < 1 2 3 4 5 6 7 8 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.