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Abstract

When using spectral nodal methods in the solution of fixed-source problems, one of the steps involves obtaining
the intranodal homogeneous solution of the neutron transport equations in the discrete ordinates formulation (𝑆𝑁),
where an eigenvalue problem is solved. Upuntil now, this process involved the emergence of𝑁 (even order forGauss-
Legendre quadrature) real and symmetric eigenvalues. However, in some cases, complex conjugates may appear in
this step. Thus, we present a significant innovation in this type of computational modelling, by using the Euler’s
Formula to manipulate the local analytical solution and achieve a possible application of coarse-mesh methods in
these cases. In order to showcase this technique, we use the spectral deterministic method to solve a model-problem
with different sets of Gaussian quadrature, which came to compute hundreds of complex eigenvalues in its analytical
solution, where a good precision was achieved when comparing the obtained numerical results with the reference.

Keywords
Spectral analysis ∙ Complex eigenvalues ∙ Neutron shielding ∙ Spectral-nodal methods ∙ Neutron transport
theory

Resumo

Quando usados métodos espectro-nodais na solução de problemas de fonte-fixa, um dos passos envolve a obtenção
da solução homogênea da equação de transporte de nêutrons na formulação de ordenadas discretas (𝑆𝑁), onde um
problema de autovalor é resolvido. Até agora, este processo envolveu o surgimento de 𝑁 (ordem par da quadratura
de Gauss-Legendre) autovalores reais e simétricos. Porém, em alguns casos, complexos conjugados podem aparecer
neste passo. Portanto, apresentamos uma significante inovação neste tipo de modelagem computacional, usando a
fórmula de Euler para manipular a solução analítica local para possibilitar a aplicação de métodos de malha grossa
nestes casos. A fim de mostrar esta técnica, usamos o spectral deterministic method para resolver um problema-
modelo comdiferentes ordens de quadraturaGaussiana, onde foram computados centenas de autovalores complexos
na solução analítica, e um resultado com boa precisão foi atingido quando comparado com o método numérico de
referência.
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1 Introduction
Simulating realistic neutron transport problems is essential in numerous fields of study, such as electricity generation
and oil prospecting. Since the neutron transport equation has an analytical solution only for very simplified cases,
many researchers work on the development of numerical methods that are capable of solving more complex fixed-
source problems.

The numerical methods can be categorized into two groups: fine-mesh and coarse-mesh methods. In one-
dimensional slab geometry, the fine-mesh methods can use linear approximations for the neutron angular flux, in a
spatial subdomain (mesh) where the physical-material parameters are uniform, with the Diamond Difference (DD)
[1] method standing as a reference even to this day. On the other hand, coarse-mesh methods, such as the Spec-
tral Deterministic Method (SDM) [2], Modified Spectral Deterministic (MSD) [3], spectral Green’s function (SGF)
[4], Response Matrix (RM) [5] and Analytical Discrete Ordinates (ADO) [6], uses a set of intranodal analytical solu-
tions, where eigenvalue problems and linear systems of equations must be solved to compute a local solution with
homogeneous and particular components.

As already seen in eigenvalue problems using spectral-nodal methods [7, 8, 9], the solution of this problem
can compute complex eigenvalues and eigenvectors. However, in one-dimensional neutron shielding (fixed-source)
problems, with the use of the deterministic model of the neutron transport equation, in the formulation of discrete
ordinates, these characteristics of the eigenvalues and respective eigenvectors, had not yet been reported. In this
paper, we present a multigroup one-dimensional fixed-source problem which led to complex eigenvalues and eigen-
vectors. Since the neutron angular flux is a real function, these eigenvalues and eigenvectors are treated in order to
enable numerical methods to be directly applied. For this, we use the Euler’s formula and a rearrangement of the
intranodal analytical solution that leads to an equation which contains only real variables.

Now, let us demonstrate the composition of this paper. In Section 2, we show the application of the 𝑆𝑁multigroup
neutron transport equation in one-dimensional stationary fixed-source problems, along with presenting its local
solution. Moving on to Section 3, we provide a comprehensive treatment of complex eigenvalues and eigenvectors
and the manipulations involved in this system of equations. In Section 4, we showcase the numerical solution of a
model problemwith complex eigenvalues and eigenvectors and compare it to a fine-mesh reference (DDmethod) for
accuracy. Finally, in Section 5, we draw insightful conclusions based on the tests conducted throughout this study.

2 Neutron Transport Equation
The intranodal stationary one-dimensional multigroup neutron transport 𝑆𝑁 equation is written in the form [1]:

𝜇𝑚
d
d𝑥

𝜓𝑚,𝑔(𝑥) + 𝜎𝑇,𝑔,𝑗𝜓𝑚,𝑔(𝑥) =
1
2

𝐺∑

𝑔′=1

⎡
⎢
⎣

𝐿∑

𝑙=0
(2𝑙 + 1)𝜎𝑔

′→𝑔
𝑆𝑙,𝑗 𝑃𝑙(𝜇𝑚)

𝑁∑

𝑛=1
𝑃𝑙(𝜇𝑛)𝜓𝑛,𝑔(𝑥)𝜔𝑛

⎤
⎥
⎦

+ 𝑄𝑔,𝑗 , 𝑚 = 1 ∶ 𝑁, 𝑔 = 1 ∶ 𝐺. (1)

where 𝜓𝑚,𝑔(𝑥) represents the neutron angular flux in position 𝑥 of energy group 𝑔 travelling in the discrete direction
𝑚, 𝜇𝑚 and𝜔𝑚 are respectively the discrete ordinates, consisting of the roots and theweights of Legendre polynomials
of orderN,𝜎𝑇,𝑔,𝑗 is the totalmacroscopic cross section and𝜎

𝑔′→𝑔
𝑆𝑙,𝑗 is the l’th ordermacroscopic scattering cross sections

from group 𝑔′ to 𝑔 in region 𝑗. The terms 𝑃𝑙(𝜇𝑛) are the l’th degree Legendre Polynomials, and 𝑄𝑔,𝑗 is an external
fixed-source of neutrons.

The intranodal neutron transport equation has a general local analytical solution, that can be written as a sum
of a homogeneous component (𝜓ℎ𝑚,𝑔(𝑥)) and a particular one 𝜓

𝑝
𝑚,𝑔 [4], in the form:

𝜓𝑚,𝑔(𝑥) = 𝜓ℎ𝑚,𝑔(𝑥) + 𝜓𝑝𝑚,𝑔, 𝑚 = 1 ∶ 𝑁, 𝑔 = 1 ∶ 𝐺. (2)

As the particular solution has the same behavior as the external source of neutrons, this component will also be a
constant. Substituting 𝜓𝑝𝑚,𝑔 in Eq.(1), leads to a system of linear equations in the form:

𝐺∑

𝑔′=1

𝑁∑

𝑛=1

⎛
⎜
⎝
𝜎𝑇,𝑔,𝑗𝛿𝑚,𝑛𝛿𝑔′,𝑔 −

1
2

𝐿∑

𝑙=0
(2𝑙 + 1)𝑃𝑙(𝜇𝑚)𝜎

𝑔′→𝑔
𝑆𝑙,𝑗 𝑃𝑙(𝜇𝑛)𝜔𝑛

⎞
⎟
⎠
𝜓𝑝𝑚,𝑔 = 𝑄𝑔,𝑗 , 𝑗 = 1 ∶ 𝐽,𝑚 = 1 ∶ 𝑁, 𝑔 = 1 ∶ 𝐺. (3)
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This system of equations has an analytical solution, by inverting the system of equations in the left hand-side and
multiplying it to the vector composed by the equations in the right hand-side of the system. This computes a set of
𝑁𝐺 particular solutions for each discretized spatial node Γ𝑗 [4]. For the homogeneous component of the solution,
we assume this component has an exponential behavior, then when the variable 𝜓ℎ𝑚,𝑔(𝑥) is substituted in Eq.(1), it
leads to an eigenvalue problem in the form:

𝐺∑

𝑔′=1

𝑁∑

𝑛=1

⎡
⎢
⎣

𝛿𝑚𝑛𝛿𝑔′𝑔𝜎𝑇,𝑔,𝑗
𝜇𝑚

−
𝜔𝑛
2𝜇𝑚

𝑁−1∑

𝑙=0
(2𝑙 + 1)𝜎𝑔

′→𝑔
𝑆𝑙,𝑗 𝑃𝑙(𝜇𝑚)𝑃𝑙(𝜇𝑛)

⎤
⎥
⎦
𝐴𝑛,𝑔′(𝜆) = 𝜆𝐴𝑚,𝑔(𝜆), 𝑚 = 1 ∶ 𝑁, 𝑔 = 1 ∶ 𝐺. (4)

The solution of this problem generates a set of 𝑁𝐺 eigenvalues and its correspondent eigenvectors.
In possession of the homogeneous and particular components, the general intranodal solution of the 𝑆𝑁 neutron

transport equation EQ1 can be rewritten as

𝜓𝑚,𝑔(𝑥) =
𝑁𝐺∑

𝑙=1
𝛼𝑙𝐴𝑚,𝑔(𝜆𝑙)𝑒−𝜆𝑙(𝑥−𝑥𝑗) + 𝜓𝑝𝑚,𝑔, (5)

where𝛼𝑙 are coefficients to be determined in each discretized spatial node using local boundary conditions. Imposing
continuity conditions among the node’s interfaces, this solution can be extended to all regions of the simulated
model.”

3 Complex Eigenvalues Treatment
The solution of the eigenvalue problem in Eq. (4) leads to a set of NG eigenvalues, and its correspondents eigenvec-
tors, which, in some cases, might have complex components of small magnitude, when compared to its correspon-
dents real part

The solution of the eigenvalues problem in Eq. (4), which is constituted by a non-symmetric associated matrix,
leads to a set of 𝑁𝐺 eigenvalues, and its correspondents eigenvector, which, in some cases, might have complex
components, depending on the physical material parameters. Although having a small magnitude, when compared
to its correspondents real part (reaching as low as 10−9 ratio, as will be seen in the numerical results section), it is
enough to avoid numerical methods to work properly, if these are not properly handled. The eigenvalue problem
was solved with the Alglib linear algebra library, using the QR decomposition function for unsymmetrical matrices
[10].

Now, considering a case with 𝐿 real eigenvalues, and 2𝑁𝐶 complete complex eigenvalues, with a 𝜗𝑙 real part and
a 𝜃𝑙 complex part, let us organize these as shown in Figure 1.

Figure 1: Eigenvalues organization

In fixed source problems, the eigenvalues and its correspondent eigenvectors are calculated, from the matrix, once,
in each region where the physical parameters of the material are different and uniform and used throughout the
entire iterative process. As these variables treatment are heavily dependant on matrices operations, it is important
to adopt an organization for the eigenvalues and its correspondent eigenvectors.

Let us make definitions for the real eigenvalues and eigenvectors as

𝜆𝑙 ≡ 𝜗𝑙 (6)
𝐴𝑔,𝑚(𝜆𝑙) ≡ 𝑎𝑔,𝑚,𝑙, 𝑙 = 1 ∶ 𝐿, (7)

and for the complex ones as
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𝜆𝑙 ≡ 𝜗𝑙 + 𝑖𝜃𝑙 (8)
𝐴𝑔,𝑚(𝜆𝑙) ≡ 𝑎𝑔,𝑚,𝑙 + 𝑖𝑏𝑔,𝑚,𝑙, 𝑙 = 𝐿 + 1 ∶ 𝐿 +𝑁𝐶 (9)

and

𝜆𝑙 ≡ 𝜗𝑙 − 𝑖𝜃𝑙 (10)
𝐴𝑔,𝑚(𝜆𝑙) ≡ 𝑎𝑔,𝑚,𝑙 − 𝑖𝑏𝑔,𝑚,𝑙, 𝑙 = 𝐿 +𝑁𝐶 + 1 ∶ 𝐿 + 2𝑁𝐶. (11)

Using the definitions of Eqs. (7)-(11), the homogeneous part of the solution can be written as a set of 3 sums, one
for the real eigenvalues, one for the complex ones and one to the conjugate complex. With this notation, it can be
written:

𝜓𝑔,𝑚(𝑥) =
𝐿∑

𝑙=1
𝛼𝑙𝑎𝑔,𝑚,𝑙𝑒(−𝜗𝑙(𝑥−𝑥𝑗)) +

𝐿+𝑁𝐶∑

𝑙=𝐿+1
𝛼𝑙(𝑎𝑔,𝑚,𝑙 + 𝑖𝑏𝑔,𝑚,𝑙))𝑒(−(𝜗𝑙+𝑖𝜃𝑙))(𝑥−𝑥𝑗))+

𝐿+𝑁𝐶∑

𝑙=𝐿+1
𝛼𝑙+𝑁𝐶(𝑎𝑔,𝑚,𝑙 − 𝑖𝑏𝑔,𝑚,𝑙))𝑒(−(𝜗𝑙−𝑖𝜃𝑙))(𝑥−𝑥𝑗)) + 𝜓𝑝𝑚,𝑔. (12)

In order to treat the complex variables in Eq. (12), let us consider the Euler’s Formula, given by

𝑒𝑖Υ = cos(Υ) + 𝑖 sin(Υ). (13)

Substituting this formula in the Eq. (12), we can rewrite the intranodal analytical solution without any complex
component in exponentials, in the form:

𝜓𝑔,𝑚(𝑥) =
𝐿∑

𝑙=1
𝛼𝑙𝑎𝑔,𝑚,𝑙𝑒(−𝜗𝑙(𝑥−𝑥𝑗)) +

𝐿+𝑁𝐶∑

𝑙=𝐿+1
𝑒(−𝜗(𝑥−𝑥𝑗))

{
(𝛼𝑙 + 𝛼𝑙+𝑁𝐶)

[
𝑎𝑔,𝑚,𝑙 cos(𝜃𝑙(𝑥 − 𝑥𝑗)) + 𝑏𝑔,𝑚,𝑙 sin(𝜃𝑙(𝑥 − 𝑥𝑗))

]
+

+ 𝑖(𝛼𝑙 − 𝛼𝑙+𝑁𝐶)
[
𝑏𝑔,𝑚,𝑙 cos(𝜃𝑙(𝑥 − 𝑥𝑗)) − 𝑎𝑔,𝑚,𝑙 sin(𝜃𝑙(𝑥 − 𝑥𝑗))

] }
+ 𝜓𝑝𝑚,𝑔. (14)

Since 𝜓𝑔,𝑚(𝑥) is a real function, the coefficients 𝛼𝑙 must be a conjugate complex of 𝛼𝑙+𝑁𝐶 . Thus, we assume
𝛼𝑙 = 𝛽𝑙 − 𝑖𝛾𝑙 and 𝛼𝑙+𝑁𝐶 = 𝛽 + 𝑖𝛾𝑙. At this point, we must find a way to eliminate the complex numbers 𝑖. For this,
we sum and subtract the definitions in order to manipulate Eq.(14). In this step, we have:

𝛼𝑙 + 𝛼𝑙+𝑁𝐶 = 2𝛽𝑙 (15)

and

𝛼𝑙 − 𝛼𝑙+𝑁𝐶 = −2𝑖𝛾𝑙. (16)

Using Eqs. (15) and (16) and reorganizing Eq. (14), leads us to

𝜓𝑔,𝑚(𝑥) =
𝐿1∑

𝑙=1
𝛼𝑙𝑎𝑔,𝑚,𝑙𝑒−|𝜗𝑙|(𝑥−𝑥𝑗) +

𝐿∑

𝑙=𝐿1+1
𝛼𝑙𝑎𝑔,𝑚,𝑙𝑒|𝜗𝑙|(𝑥−𝑥𝑗)+

+
𝐿+𝑀∑

𝑙=𝐿+1
2𝛽𝑙𝑒−|𝜗𝑙|(𝑥−𝑥𝑗)

{
𝑎𝑔,𝑚,𝑙 cos(𝜃𝑙(𝑥 − 𝑥𝑗)) + 𝑏𝑔,𝑚,𝑙 sin(𝜃𝑙(𝑥 − 𝑥𝑗))

}
+

+
𝐿+𝑁𝐶∑

𝑙=𝐿+𝑀+1
2𝛽𝑙𝑒|𝜗𝑙|(𝑥−𝑥𝑗)

{
𝑎𝑔,𝑚,𝑙 cos(𝜃𝑙(𝑥 − 𝑥𝑗)) + 𝑏𝑔,𝑚,𝑙 sin(𝜃𝑙(𝑥 − 𝑥𝑗))

}
+

+
𝐿+𝑀∑

𝑙=𝐿+1
2𝛾𝑙𝑒−|𝜗𝑙|(𝑥−𝑥𝑗)

{
𝑏𝑔,𝑚,𝑙 cos(𝜃𝑙(𝑥 − 𝑥𝑗)) − 𝑏𝑔,𝑚,𝑙 sin(𝜃𝑙(𝑥 − 𝑥𝑗))

}
+

+
𝐿+𝑁𝐶∑

𝑙=𝐿+𝑀+1
2𝛾𝑙𝑒−|𝜗𝑙|(𝑥−𝑥𝑗)

{
𝑏𝑔,𝑚,𝑙 cos(𝜃𝑙(𝑥 − 𝑥𝑗)) − 𝑏𝑔,𝑚,𝑙 sin(𝜃𝑙(𝑥 − 𝑥𝑗))

}
+ 𝜓𝑝𝑚,𝑔, (17)
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where 𝐿1 represents the number of positive real eigenvalues, and𝑀 represents the number of complex eigenvalues
with positive real component. In this notation, all the eigenvalues complex components (𝜃𝑙) are positive.

Now, we can use the Eq. (17) to the left (𝑥 = 𝑥𝑗−1∕2) and right (𝑥 = 𝑥𝑗+1∕2) nodal interfaces. But since the
exponential present in Eq. (17) may cause overflow problems, let us multiply and divide the terms inside the sums
by 𝑒(−|𝜗𝑙|ℎ𝑗∕2). After this step, for the right interface of the Γ𝑗 node, we have

𝜓𝑔,𝑚(𝑥𝑗+1∕2) =
𝐿1∑

𝑙=1
�̂�𝑙𝑎𝑔,𝑚,𝑙𝑒−|𝜗𝑙|ℎ𝑗 +

𝐿∑

𝑙=𝐿1+1
�̂�𝑙𝑎𝑔,𝑚,𝑙+

+
𝐿+𝑀∑

𝑙=𝐿+1
�̂�𝑙𝑒−|𝜗𝑙|ℎ𝑗

{
𝑎𝑔,𝑚,𝑙 cos(𝜃𝑙ℎ𝑗∕2) + 𝑏𝑔,𝑚,𝑙 sin(𝜃𝑙ℎ𝑗∕2)

}
+

+
𝐿+𝑁𝐶∑

𝑙=𝐿+𝑀+1
�̂�𝑙
{
𝑎𝑔,𝑚,𝑙 cos(𝜃𝑙ℎ𝑗∕2) + 𝑏𝑔,𝑚,𝑙 sin(𝜃𝑙ℎ𝑗∕2)

}
+

+
𝐿+𝑀∑

𝑙=𝐿+1
�̂�𝑙+𝑁𝐶𝑒−|𝜗𝑙|ℎ𝑗

{
𝑏𝑔,𝑚,𝑙 cos(𝜃𝑙ℎ𝑗∕2) − 𝑎𝑔,𝑚,𝑙 sin(𝜃𝑙ℎ𝑗∕2)

}
+

+
𝐿+𝑁𝐶∑

𝑙=𝐿+𝑀+1
�̂�𝑙+𝑁𝐶

{
𝑏𝑔,𝑚,𝑙 cos(𝜃𝑙ℎ𝑗∕2) − 𝑎𝑔,𝑚,𝑙 sin(𝜃𝑙ℎ𝑗∕2)

}
+ 𝜓𝑝𝑚,𝑔, (18)

and for the left interface

𝜓𝑔,𝑚(𝑥𝑗−1∕2) =
𝐿1∑

𝑙=1
�̂�𝑙𝑎𝑔,𝑚,𝑙 +

𝐿∑

𝑙=𝐿1+1
�̂�𝑙𝑎𝑔,𝑚,𝑙𝑒−|𝜗𝑙|ℎ𝑗+

+
𝐿+𝑀∑

𝑙=𝐿+1
�̂�𝑙
{
𝑎𝑔,𝑚,𝑙 cos(𝜃𝑙ℎ𝑗∕2) − 𝑏𝑔,𝑚,𝑙 sin(𝜃𝑙ℎ𝑗∕2)

}
+

+
𝐿+𝑁𝐶∑

𝑙=𝐿+𝑀+1
�̂�𝑙𝑒−|𝜗𝑙|ℎ𝑗

{
𝑎𝑔,𝑚,𝑙 cos(𝜃𝑙ℎ𝑗∕2) − 𝑏𝑔,𝑚,𝑙 sin(𝜃𝑙ℎ𝑗∕2)

}
+

+
𝐿+𝑀∑

𝑙=𝐿+1
�̂�𝑙+𝑁𝐶𝑒−|𝜗𝑙|ℎ𝑗

{
𝑏𝑔,𝑚,𝑙 cos(𝜃𝑙ℎ𝑗∕2) + 𝑎𝑔,𝑚,𝑙 sin(𝜃𝑙ℎ𝑗∕2)

}
+

+
𝐿+𝑁𝐶∑

𝑙=𝐿+𝑀+1
�̂�𝑙+𝑁𝐶𝑒−|𝜗𝑙|ℎ𝑗

{
𝑏𝑔,𝑚,𝑙 cos(𝜃𝑙ℎ𝑗∕2) + 𝑎𝑔,𝑚,𝑙 sin(𝜃𝑙ℎ𝑗∕2)

}
+ 𝜓𝑝𝑚,𝑔. (19)

where �̂�𝑙 can be defined as

�̂�𝑙 ≡

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝛼𝑙
𝑒(−|𝜗𝑙|ℎ𝑗∕2)

, for 𝑙 = 1 ∶ 𝐿

2𝛽𝑙
𝑒(−|𝜗𝑙|ℎ𝑗∕2)

, for 𝑙 = 𝐿 + 1 ∶ 𝐿 +𝑁𝐶

2𝛾𝑙
𝑒(−|𝜗𝑙|ℎ𝑗∕2)

, for 𝑙 = 𝐿 +𝑁𝐶 + 1 ∶ 𝐿 + 2𝑁𝐶.

4 Numerical Results
In this section, a one-dimensional problem, that presents complex eigenvalues and eigenvectors is solved. The
coarse-mesh method used is the Spectral Deterministic Method (SDM) [2]. The numerical results for the neutron
scalar fluxes are compared with a fine-mesh reference, using the Diamond Difference method.

In this model-problem, we study a 4 group heterogeneous case, with 4 different physical-material zones [3].
The geometry of this problem can be seen in Figure 2. The left boundary condition has prescribed angular scalar
fluxes 𝜓𝑚,𝑔,1∕2 = 1.00 𝑐𝑚−2𝑠−1𝑠𝑟, and vacuum in the right boundary, with no external neutron sources. The total
macroscopic cross-section is 𝜎𝑇,𝑔,𝑗 = 1.0 𝑐𝑚−1 for all energy groups and regions, and the macroscopic scattering
cross-section of each material zone are shown in Tables 1-4.
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Figure 2: Model-problem 1 geometry and material zones configuration

Table 1: Material zone 1

Group 𝜎1→𝑔
𝑆0 𝜎2→𝑔

𝑆0 𝜎3→𝑔
𝑆0 𝜎4→𝑔

𝑆0

𝑔 = 1 0.55 0.00 0.00 0.00
𝑔 = 2 0.22 0.60 0.00 0.00
𝑔 = 3 0.10 0.20 0.45 0.00
𝑔 = 4 0.05 0.10 0.25 0.55

Table 2: Material zone 2

Group 𝜎1→𝑔
𝑆0 𝜎2→𝑔

𝑆0 𝜎3→𝑔
𝑆0 𝜎4→𝑔

𝑆0

𝑔 = 1 0.60 0.00 0.00 0.00
𝑔 = 2 0.15 0.65 0.00 0.00
𝑔 = 3 0.09 0.15 0.70 0.00
𝑔 = 4 0.05 0.07 0.20 0.50

The neutron scalar fluxes were calculated in each region’s interface. The stopping criterion is calculated using
the neutron scalar fluxes between two subsequent iterations as:

⎛
⎜
⎝

𝜙(𝑘)𝑔,𝑗−1∕2 − 𝜙(𝑘−1)𝑔,𝑗−1∕2

𝜙(𝑘−1)𝑔,𝑗−1∕2

⎞
⎟
⎠
× 100% < 𝜉, 𝑗 = 1 ∶ 𝐽 + 1, (20)

where 𝜉 represents a pre-estabilished tolerance, 𝜉 = 10−6 in all problems executed here, 𝑘 represents the iteration
number, and the neutron scalar flux is calculated as:

𝜙𝑔,𝑗−1∕2 =
𝑁∑

𝑛=1
𝜔𝑛𝜓𝑛,𝑔(𝑥𝑗−1∕2), 𝑔 = 1 ∶ 𝐺, 𝑗 = 1 ∶ 𝐽 − 1. (21)

This model is solved using 3 Gaussian quadrature orders, 𝑁 = 4, 16 and a more computationally expensive one
with 𝑁 = 256, which led to the computing of hundreds of complex eigenfunctions. A reference numerical result
was calculated using the the diammond differencemethod, with 5000 nodes in each region. The referencemesh was
refined until the neutron scalar fluxes did not change within the sixth decimal place. Since the MSD method is free
of truncation error, it was used only 1 node per region.

4.1 Gaussian-Legendre Quadrature 𝑁 = 4
The solution of this model-problem with a Gaussian quadrature of order 4, leads to a set of 16 eigenvalues (being 4
energy groups × 4 discrete directions) for each material-zone. In this case, 4 complex eigenvalues were computed
in material zones 1 and 4 each. Table 5 shows these eigenvalues with the positive complex parts, although the
conjugates were also computed.

Table 5: Complex eigenvalues in model-problem 1 - 𝑆4.

Material zone 𝜗 𝜃

1 9.579302e-01 2.233328e-08
-9.579302e-01 5.683020e-09

4 2.341383e+00 5.100480e-08
9.226372e-01 2.895429e-08

The numerical results for the neutrons scalar fluxes using Gaussian quadrature 𝑁 = 4 are shown in Table 6, with
the relative percentage deviation between the MSD and the reference inside the parenthesis.
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Table 3: Material zone 3

Group 𝜎1→𝑔
𝑆0 𝜎2→𝑔

𝑆0 𝜎3→𝑔
𝑆0 𝜎4→𝑔

𝑆0

𝑔 = 1 0.65 0.00 0.00 0.00
𝑔 = 2 0.18 0.75 0.00 0.00
𝑔 = 3 0.08 0.12 0.68 0.00
𝑔 = 4 0.02 0.08 0.22 0.60

Table 4: Material zone 4

Group 𝜎1→𝑔
𝑆0 𝜎2→𝑔

𝑆0 𝜎3→𝑔
𝑆0 𝜎4→𝑔

𝑆0

𝑔 = 1 0.45 0.00 0.00 0.00
𝑔 = 2 0.30 0.60 0.00 0.00
𝑔 = 3 0.12 0.18 0.63 0.00
𝑔 = 4 0.07 0.14 0.21 0.60

Table 6: Neutron scalar fluxes for (𝑐𝑚−2𝑠−1) for model-problem 1 - 𝑆4

Method Group 𝑥 = 0 𝑐𝑚 𝑥 = 5 𝑐𝑚 𝑥 = 10 𝑐𝑚 𝑥 = 15 𝑐𝑚 𝑥 = 20 𝑐𝑚

DD

1 5.985087×10−1 3.081410×10−3 3.285798×10−5 3.615141×10−7 1.607666×10−9
2 6.188975×10−2 3.865135×10−3 7.631446×10−5 1.904389×10−6 1.428770×10−8
3 3.548206×10−2 3.531797×10−3 1.263835×10−4 2.908361×10−6 3.257054×10−8
4 2.920117×10−2 4.296231×10−3 1.212879×10−4 4.085070×10−6 5.729438×10−8

MSD

1 5.985087×10−1 3.081417×10−3 3.285813×10−5 3.615164×10−7 1.607680×10−9
(0) (0,00022717) (0.00045651) (0.00063621) (0.00087083)

2 6.188975×10−2 3.865139×10−3 7.631468×10−5 1.904397×10−6 1.428780×10−8
(0) (0.00010349) (0.00028828) (0.00042008) (0.00069990)

3 3.548206×10−2 3.531801×10−3 1.263838×10−4 2.908372×10−6 3.257075×10−8
(0) (0.00011326) (0.00023737) (0.00037822) (0.00064475)

4 2.920117×10−2 4.296234×10−3 1.212882×10−4 4.085085×10−6 5.729475×10−8
(0) (0.00006983) (0.00024735) (0.00036719) (0.00064579)

4.2 Gaussian-Legendre Quadrature 𝑁 = 16
Using the𝑁 = 16Gaussian quadrature set, 8 complex eigenvalues were computed for the first material zone, and 16
for the fourth one. As the 𝑆4 case, the eigenvalues with positive complex components are shown in Table 7, but its
conjugates were also computed.

Table 7: Complex eigenvalues in model-problem 1 - 𝑆16.

Material zone 𝜗 𝜃

1

1.541449e+00 7.382977e-09
1.026697e+00 2.275965e-10
-2.074201e+00 1.355041e-08
-1.110299e+00 4.085901e-09

4

9.925055e+00 4.662198e-08
3.351517e+00 3.276860e-08
1.534416e+00 2.951119e-09
1.025103e+00 1.788802e-09
-2.064213e+00 2.270793e-08
-1.534416e+00 2.113968e-08
-9.073326e-01 1.296608e-08
-1.025103e+00 4.218374e-09

The results for the neutron scalar fluxes in the region’s interfaces are displayed in Table 8, alongside the percentage
deviations, as in the 𝑁 = 4 case.
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Table 8: Neutron scalar fluxes (𝑐𝑚−2𝑠−1) for model-problem 1 - 𝑆16

Method Group 𝑥 = 0 𝑐𝑚 𝑥 = 5 𝑐𝑚 𝑥 = 10 𝑐𝑚 𝑥 = 15 𝑐𝑚 𝑥 = 20 𝑐𝑚

DD

1 5.985087×10−1 3.021477×10−3 3.335254×10−5 3.876153×10−7 1.847463×10−9
2 6.188974×10−2 3.834792×10−3 7.578095×10−5 1.932782×10−6 1.475540×10−8
3 3.548202×10−2 3.514151×10−3 1.251785×10−4 2.919238×10−6 3.306714×10−8
4 2.920117×10−2 4.268252×10−3 1.201737×10−4 4.094509×10−6 5.778184×10−8

MSD

1 5.985087×10−1 3.021478×10−3 3.335257×10−5 3.876157×10−7 1.847466×10−9
(0) (0.00003310) (0.00008995) (0.00010320) (0.00016238)

2 6.188974×10−2 3.834793×10−3 7.578099×10−5 1.932784×10−6 1.475542×10−8
(0) (0.00002608) (0.00005278) (0.00010348) (0.00013554)

3 3.548202×10−2 3.514152×10−3 1.251785×10−4 2.919240×10−6 3.306719×10−8
(0) (0.00002846) (0) (0.00006851) (0.00015121)

4 2.919957×10−2 4.268194×10−3 1.201733×10−4 4.094517×10−6 5.778195×10−8
(0.00547923) (0.00135887) (0.00033285) (0.00019538) (0.00019037)

4.3 Gaussian-Legendre Quadrature 𝑁 = 256
A more computationally expensive Gaussian quadrature set was also used in the solution of this model-problem.
With 𝑁 = 256, hundreds of eigenvalues were computed. As in this case, a large amount of eigenfunctions are
obtained, these are better displayed in a chart, as shown in Figure 3, where the eigenvalues in regions 1 and 4 are
respectively represented by the blue and orange dots, with real component (𝜗) in the 𝑥−axis and complex component
in the 𝑦−axis (𝜃). As in the previous eigenvalues tables, in this figure, only the eigenvalues with positive complex
components are displayed, but its conjugates are also computed.
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Figure 3: Complex eigenvalues representation - 𝑆256

The numerical results for the neutron scalar fluxes in the 𝑁 = 256 case are shown in Table 9, alongside the
percentage deviation.
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Table 9: Neutron scalar fluxes (𝑐𝑚−2𝑠−1) for model-problem 1 - 𝑆256

Method Group 𝑥 = 0 𝑐𝑚 𝑥 = 5 𝑐𝑚 𝑥 = 10 𝑐𝑚 𝑥 = 15 𝑐𝑚 𝑥 = 20 𝑐𝑚

DD

1 5.985087×10−1 3.020339×10−3 3.334018×10−5 3.874016×10−7 1.846105×10−9
2 6.188974×10−2 3.832744×10−3 7.574997×10−5 1.931736×10−6 1.474215×10−8
3 3.548202×10−2 3.512730×10−3 1.251151×10−4 2.917859×10−6 3.303602×10−8
4 2.920117×10−2 4.265850×10−3 1.201241×10−4 4.092650×10−6 5.772684×10−8

MSD

1 5.985087×10−1 3.020340×10−3 3.334020×10−5 3.874019×10−7 1.846108×10−9
(0) (0.00003311) (0.00005999) (0.00007744) (0.00016250)

2 6.188937×10−2 3.832722×10−3 7.574966×10−5 1.931731×10−6 1.474213×10−8
(0.00059783) (0.00057400) (0.00040924) (0.00025883) (0.00013567)

3 3.548157×10−2 3.512698×10−3 1.251143×10−4 2.917846×10−6 3.303592×10−8
(0.00126824) (0.00091097) (0.00063941) (0.00044553) (0.00030270)

4 2.919278×10−2 4.265467×10−3 1.201205×10−4 4.092595×10−6 5.772639×10−8
(0.02873172) (0.00897828) (0.00299690) (0.00134387) (0.00016238)

4.4 Results analysis
The numerical results obtained in the solution of thismodel-problem showed that the proposed complex eigenvalues
treatment was efficient. With the 𝑁 = 4 Gaussian quadrature order, the coarse-mesh method was able to compute
neutron scalar fluxes with the same 6 decimal places as the reference in the leftmost interface of the spatial domain,
with the biggest percentage deviation of 0.00087083 % in 𝑥 = 20 cm. For the 𝑁 = 16 case, similar behaviour was
achieved, with exact 6 decimal places of precision in the neutron scalar flux in some energy groups in positions 𝑥 = 0
and 10 cm, having the most amount of deviation being 0.00547923 %. Now, analyzing the numerical results for the
most expensive case studied here, the MSD was able to reach at least 0.02873172 % of precision when compared to
the reference, even reaching all 6 decimal places of precision in 𝑥 = 0 for one of the energy groups.

5 Concluding Remarks
In this work, a technique to treat complex eigenvalues in applied in neutron shielding problems is presented. It
relies on the rearrangement of the neutron transport equations local analytical solution, using the Eulers Formula,
where the complex eigenfunctions, which haven’t been seen in one-dimensional problems yet, are transformed in
an equivalent real system of equations.

A model problem with 4 energy group was solved, using 𝑁 = 4, 16 and 256 Gaussian quadrature orders, where
in each case a set of complex conjugate eigenvalues were computed. This treatment was implemented within the
Spectral Deterministic Method, which enabled its usage in cases with complex eigenvalues. The numerical results
achieved with the SDM were compared with the fine-mesh reference method Diamond Difference. In all studied
cases, this technique led to an intranodal analytical solution that enabled the coarse-meshmethod to solve themodel-
problem with good accuracy, even achieving all 6 decimal places of precision in some positions when compared to
the reference. When considering the𝑁 = 256 case, this treatment allowed the problem to be solved with the highest
deviation being lesser than 0.1 %, despite having hundreds of complex eigenvalues.

Analyzing the computed complex eigenvalues in all studied cases here, we were able to conclude that even for
eigenvalues with 𝜃𝑙∕𝜗𝑙 ratios smaller than 10−10 magnitude, it would not be solved considering only the real part
of these variables, which led the SDM errors during the iterative process. For future works, we intend to apply this
technique to multidimensional problems, and solve problems with higher number of energy groups.
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