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Resumo 
O uso de veículos autônomos subaquáticos (AUVs) para tarefas submarinas é um 

campo promissor da robótica. Estes robôs podem transportar uma câmera de inspeção 

visual, que além de inspecionar e mapear, as imagens capturadas podem auxiliar a 

navegação e localização dos robôs. Neste contexto, este trabalho propõe uma abordagem 

para o mapeamento destes veículos. Supondo o uso de câmeras de inspeção, esta 

proposta é composta pelo desenvolvimento de mapas topológicos utilizando mapas auto-

organizáveis e estruturas celulares crescente (GCS) para a localização e navegação. 

Uma série de testes foram realizados, em relação a problemas de desempenho online. Os 

resultados revelaram uma boa precisão e robustez para uma série de condições 

subaquáticas, como iluminação e ruído, mostrando ser uma técnica de mapeamento 

visual promissora e original. 

 

Palavras-chaves  mapas auto-organizáveis; estruturas celulares crescentes; 

mapeamento; navegação, localização. 

 
SELF ORGANIZING MAPS FOR AUVS MAPPING 

 

Abstract 
The use of Autonomous Underwater Vehicles (AUVs) for underwater tasks is a 

promising robotic field. These robots can carry visual inspection cameras. Besides serving 

the activities of inspection and mapping, the captured images can also be used to aid 

navigation and localization of the robots. In this context, this paper proposes an approach 

to mapping of underwater vehicles. Supposing the use of inspection cameras, this 

proposal is composed of the development of topological maps using self-organizing maps 

and Growing Cell Structures (GCS) for localization and navigation. A set of tests was 
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accomplished, regarding online and performance issues. The results reveals an accuracy 

and robust approach to several underwater conditions, as illumination and noise, leading 

to a promissory and original visual mapping technique. 

 
Keywords  self-organizing maps; growing cell structures; mapping; navigation, 
localization.         

 
1  INTRODUCTION  
 

Autonomous Underwater Vehicles (AUVs) are mobile robots that can be applied to 

many tasks of difficult human exploration [1]. In underwater visual inspection, the vehicles 

can be equipped with down-looking cameras, usually attached to the robot structure [2]. 

These cameras capture images from the deep of the ocean. In these images, natural 

landmarks, also called key points in this work, can be detected allowing the AUV 

localization and mapping. 

In this paper we propose a new approach to AUV mapping. Our approach extract 

and map key points between consecutive images in underwater environment, building 

online key points maps. This maps can be used to robot localization and navigation. We 

use Scale Invariant Feature Transform (SIFT), which is a robust invariant method to key 

points detection [3]. Furthermore, these key points are used as landmarks in an online 

topological mapping.  

We propose the use of self-organizing maps (SOM) based on Kohonen maps [4] 

and Growing Cell Structures (GCS) [5] that allow a consistent map construction even in 

presence of noisy information.  

First the paper presents a detailed view of the SOM and GCS. Next, our approach is 

presented, followed by the implementation, test analysis and results with different 

undersea features. Finally, the conclusion of the study and future perspectives are 

presented. 

 

2  USING SOM AND GCS FOR AUV MAPPING 
 

Figure 1 shows an overview of the approach proposed here. First, the underwater 

image is captured and pre-processed to removal distortions caused by water diffraction [6]. 

With the corrected image, key points are detected and local descriptors for each one of 

these points are computed by SIFT. Each key point has a n dimensional local descriptors 
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and global pose informations. A matching stage provides a set of correlated key points 

between consecutive images. The relative motion between frames is estimated, using the 

correlated points and the homography matrix [7]. 

 

 
FIGURE 1: System Overview 

 

The key points are used to create and train the topological maps. The growing cell 

structures algorithm is used to create the nodes and edges of the SOM. Each node has a 

n-dimensional weight. After a training stage, the system provides a topological map, where 

its nodes represent the main key points of the environment. 

During the navigation, when a new image is captured, the system calculus its local 

descriptors, correlating them with the nodes of the current trained SOM. 

Next, it is detailed the proposed approach. 

 

2.1  Self-Organized Maps 
Self-Organizing maps are neural grids based on competition and unsupervised 

learning. The process starts from a competition layer which is usually uni or two-

dimensional [8]. Each neuron of the respective layer is connected with a input layer 

through weights. If the input layer has X neurons, each neuron of competition layer will 

have X connections with the neurons of input layer, see Figure 2. 
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FIGURE 2: Network Model 

 

To obtain the winner neuron, which better represents input data, neurons of 

competitive layer fight among themselves. The neurons of competitive layer compete to be 

the neuron that best represents the input data, called the winner neuron. For this it is used 

a similarity metric, for instance, Euclidean Distance between the input vector and the 

vector of synaptic weights of the neuron in question, which derived from the equation 1. 

 

                                                    

n

j
ijji ))t(w)t(x()t(d     (1) 

 

where x = (x1, x2 xn), represents a set of input data in a time t and w = (w1, w2 wn) 

represents the set of weights of neuron i in time t. The organization of neurons with their 

neighbors are called neighborhood. The best self-organization is obtained when the set of 

neighbors get extensive and decreases monotonically with time. A learning function is a 

multiplying of a learning constant  by the difference between input vector (X) and weights 

(W), plus the weight vector (W) applied the winner neuron and all who were in your 

neighborhood, mathematically, is obtained from the equations 2 and 3. 

 

                                      )]t(X[*)t()t(W)t(W ii , if i  Vi(t)  (2) 

)t(W)t(W ii ,  if i  Vi(t)    (3) 

 

SOM - Basic Algorithm 
The algorithm for the formation of self-Organizing maps follows the process of 

competition, cooperation and synaptic adaptation. First, the competition, for each input 

pattern, calculates the response of output neurons (grid). 

The neuron with the highest response is the winner of the competition (Euclidean 

distance). In cooperation the winner neuron defines a topological neighborhood of excited 
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neurons. Finally, the synaptic adaptation is learning from the standard input. The weights 

of the winner neuron and its neighborhood are closer to the standard input. The following 

will be presented more detailed descriptions of the processes. 

The algorithm starts with a high level of neighborhood and this is reduced as time 

-organizing 

map, Figure 3. Gaussian function is a interesting way to implement a neighborhood 

function, once that is invariant to translation. 

 

 
FIGURE 3: Neighborhood Region 

 

In the adaptation is performed a modification on weights in relation to input, 

iteratively. The equation is applied to whole grid of neurons inside neighborhood region hj i, 

as noted in equation 4.  

 

))t(wx)(t)(x(h)t()t(w)t(w jjiijj    (4) 

 

where wj(n + 1) is updated weight, wj(n) the previous weight vector, ji(x) 

neighborhood and x  wj(t) is adaptation.  

 

2.2  GCS - Growing Cell Structures 
A cell structure is a self-organizing map with one important feature, which is the 

ability to find by yourself a specific network for the problem through a growth process. In 

the proposed approach, we use Growing Cell Structures (GCS) proposed by Bernd Fritzke 

[5], searching for solve the greatest restriction of Kohonen nets, a fix topology, whereas to 

define  knowledge, that is 

generally unavailable [9]. Without these knowledge you can limit the ability of the network. 
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This type of SOM with variable topology allows the network to grow from an initial topology 

minimal n-dimensional. Regardless of the size of the initial topology, each cell containing a 

vector of the size of mapped space. These structures are able to grow against the need for 

better classification of points in space. Each number of misclassifications, a new cell is 

created. This incorrect classification is defined as the distance vector presented with the 

best vector found in the map, where more than a specified value is set to misclassification. 

 

2.2.1  Cell Insertion: If a number of input signals exceeds a threshold value, a new cell 

Wnew is inserted between the cell that has the greatest number of winning times Wbmu and 

its nearest neighbor Wprox, Figure 4, where the node in gray is the cell to be inserted. The 

weight of the new unit is given by equation 5. 

 

 

 
FIGURE 4: Illustration of cell insertion 

 

)WW(W proxbmunew     (5) 

 
2.2.2  Cell Deletion: To remove nodes, after a certain number of iterations, the cell with 

the highest average Euclidean distance will be removed and all its neighbors that are left 

with only one connection after its removal will also be excluded, see Figure 5. 

 

 
FIGURE 5: Illustration of cell deletion: Cell A is deleted. Cells B and C are within the neighborhood of A and 

would be left dangling by removal of the five connections surrounding A, so B and C are also deleted 

 

Integrating the SOM concepts and the GCS proposal, our approach allows a 

dynamical map building. After a training set, the topological map represents the space of 
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descriptors. The nodes converge to the ideal set of percentage informations. This map can 

be update during the navigation, enhancing the accuracy of the environment 

representation. 

 

 

3  IMPLEMENTATION, TESTS AND RESULTS 
 

In this work we use the robot presented in Figure 6. This robot is equipped with a 

Tritech Typhoon Colour Underwater Video Camera with zoom, a miniking sonar and a set 

of sensors (altimeters and accelerometers) [10]. 

 

 
FIGURE 6: ROVFURGII in test field 

 

The visual system was tested in a desktop Intel Core 2 Quad Q6600 computer with 

2Gb of DDR2-667 RAM. The camera is NTSC standard using 320x240 pixels at a 

maximum rate of 29.97 frames per second. 

A group of tests was conducted with videos captured by ROV. The table I shows the 

steps of an intermediate map adaptation with its number of frames, points of interest 

(captured by the visual sensor) [11] and nodes. The illustration 7 illustrates the growth of 

the map with 50 frames presented by the visual sensor, below it illustrates the state of the 

map with 120 frames and the last with 170 frames. 
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TABLE I 

Map construction with GCS algorithm 

Frames Key points Nodes 

50 5108 76 

120 9360 198 

171 11628 287 

342 23256 386 

684 46512 545 

1026 69768 683 

 

 
FIGURE 7: State of the topological map in three different states. 
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The Figure 8 shows the map after the test phase (1026 frames), we can notice that 

there is not great modification starting from the frame 170, because from this point, it 

happens a replay of the points already contained in the map, but with accumulated error. 

Our approach obtained as results a reduction of the error in the localization when we use 

the topological approach in relation to the use of simple visual odometry. 

 

 
FIGURE 8: State of the final topological map. 

 

navigation task. In this task, it passed three times on the reference. In this illustration are 

represented the estimated position of both approaches, in blue the topological and in red 

the visual odometry. The table II shows the normalized mistake of position of each 

method.  

 
FIGURE 9: Distance Y generated by ROVFURGII in movement. 
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TABLE II 

Normalized error of localization of visual odometry e SOM 

Visual Odometry SOM 
0.33 0.09 

0.68 0.35 

1.00 0.17 

 

The reduction of error associated to the localization with the SOM validates the 

robustness of the topological approach. Then the topological map in its final state allows 

us to navigate in two different ways: Through positions as objective and for visual goals. 

Starting from the current position, search algorithms in graphs such as Dijkstra [12] or the 

algorithm A* [13] can be used to find a path to the target place. 

 

4. CONCLUSION 
 

This paper details a new approach for mapping of a underwater robot using visual 

information, SOM and GCS. This system can be used either in autonomous inspection 

tasks or in control assistance of robot closed-loop, in case of a human remote operator. 

The effectiveness of our proposal was evaluated inside a set of real scenarios. The 

original integration of visual information (using SIFT descriptors) and topological maps with 

GCS for AUV navigation is a promising field. The topological mapping based on Kohonen 

Nets and GCS showed potential to underwater SLAM (Simultaneous Localization and 

Mapping) applications using visual information due to its robustness to sensory 

impreciseness and low computational cost. The GCS stabilizes in a limited number of 

nodes sufficient to represent a large number of descriptors in a long sequence of frames. 

The SOM localization shows good results, validating its use with visual odometry. 

As future work, we continue to detail the analysis of our topological mapping 

system, executing a set of tests with different scenarios and parameters. We intend to 

fusion different sensor information. 
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