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Abstract 

 

The study of beams is one of the main problems investigated in Civil Engineering, and these structures are 

governed by differential equations. This article seeks to identify numerical solutions of the balance equation of 

beams on elastic basis, using the Finite Element Method and applying the variational methods, i.e., Placement, 

Sub-regions and Least Squares Method, aiming to compare the results obtained through numerical experiments 

and the analytical solution, to identify the variational method that provides the best approximate solution, 

befitting the analytical solution. This is a bibliographic review, with descriptive approach and numerical 

simulations using the Phyton programming language. We compared the solutions of the model problem for two 

different cases, using the methods mentioned above, noting that in the 1st case, the Methods of Sub-regions and 

Placement provide the best approximation for vertical displacements, with a polynomial base function, while in 

the 2nd case the trigonometric function provides a better approximation, presenting significant variations in 

relation to the 1st case,  due to changes in parameters, spring coefficient (k), modulus of longitudinal elasticity (E) 

and cross-sectional inertia (I). Thus, starting from this formulation, other problems frequently encountered in 

engineering can be analyzed, such as continuous beams and dynamic analysis of beams. 
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Resumo 

 

O estudo de vigas é um dos principais problemas investigados na Engenharia Civil, sendo estas estruturas regidas 

por equações diferenciais. Este artigo busca identificar soluções numéricas da equação de equilíbrio de vigas sobre 

base elástica, utilizando o Método dos Elementos Finitos e aplicando os métodos variacionais, a saber, Colocação, 

Sub-regiões e Método dos Mínimos Quadrados, visando comparar os resultados obtidos através de 

experimentações numéricas e a solução analítica, para identificar o método variacional que fornece a melhor 

solução aproximada, condizente com a solução analítica. Trata-se de uma revisão bibliográfica, com abordagem 

descritiva e realização de simulações numéricas utilizando a linguagem de programação Phyton. Comparamos as 

soluções do problema modelo para dois casos diferentes, utilizando os métodos citados anteriormente, 

constatando que no 1° caso, os Métodos das Sub-regiões e Colocação fornecem a melhor aproximação para os 
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deslocamentos verticais, com uma função base polinomial, enquanto no 2° caso a função trigonométrica fornece 

uma melhor aproximação, apresentando variações significativas em relação ao 1° caso, devido as mudanças nos 

parâmetros, coeficiente de mola (K), módulo de elasticidade longitudinal (E) e inércia da seção transversal (I). 

Assim, partindo desta formulação, podem ser analisados outros problemas encontrados frequentemente na 

engenharia, tais como vigas contínuas e análise dinâmica de vigas. 

Palavras-chave 

 

Análise numérica    Vigas    Métodos Variacionais 

 

1 Introduction 
 
In general, studies involving structures allow the use of several classical techniques to work with problems in the 

field of constructions. The study of beams is considered as one of the main problems investigated in Civil 

Engineering, where depending on the type of structure addressed, the problems have occurred quite frequently. 

These structures are governed by differential equations with various behaviors and properties. In fact, there are 

methodologies for the development of mathematical models, where it is possible to perceive the existence of a set 

of parameters that define the dynamics of the adopted model.  

As addressed by Santos and Lacerda [1], vertical displacement monitoring and internal efforts are initial 

parameters used for the sizing and control of structures in general. However, there are several types of structures, 

and in this work the approach is limited to the beams of elastic bases, where the predominance of the elastic base 

in its entire tying, causes certain behaviors that directly influence the structural projects of the buildings. 

In this sense, to analyze the behavior of elastic base beams, it is necessary to approach some concepts, such as 

the calculation of vertical displacement, which requires the application of advanced mathematical methods, 

among which there is the Finite Element Method (FEM), which allows, in a variational way, the discretization of 

the solution domain in small regions and approximation of the behavior of variables (unknowns) in these regions. 

Thus, the application of the MEF aims to generate approximate values for the observed behavior using 

approximation of derivatives by means of finite elements, to the desired order of error [2]. 

So, it is important to emphasize that the Variational Methods allow to obtain approximate solutions to the 

solution of a certain problem of contour value, assuming that the functions considered are sufficiently regular, in 

the sense that the integration or derivation operations have felt, limited exclusively to the case of linear operators. 

The Finite Element method provides a general and systematic technique for the construction of form functions, 

which are designated to assume the unit or zero value at the nodal points within each element [3]. 

Polycarpou [4] states that the main idea behind the method is the representation of the domain in smaller 

subdomains called finite elements, and the form functions must be a complete set of polynomials, whose accuracy 

of the solution depends, among other factors, on the order of these polynomials, which can be linear, quadratic, 

cubic or higher order. 

Thus, this work seeks to identify the numerical solution of the balance equation of beams on elastic basis, 

using the Finite Element Method for different domain approaches, with application of some variational methods, 

namely that of placement, sub-regions and least squares method, aiming to compare the results obtained with the 

analytical solution, in order to identify which method provides the best approximate solution, befitting the 

analytical solution.  

 

2 Mathematical Modeling 
 
The beams are defined by item 14.4.1.1 of NBR 6118 [5], defines the beams as being “linear elements in which 

flexion is preponderant”. There are different types and models of beams, but this work focuses on the descriptive 

approach of beams on elastic base. According to Santos and Lacerda [1], in a beam on elastic foundation that is 

influenced by external loads, the reaction forces of the foundation are proportional at each point to the 

displacement of the elastic line. Thus, in this type of model the distributed loads that act on the beam can be 

admitted as being a uniform distribution along its length. 
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2.1 Problem definition 
 

The model problem under study is a beam supported along its entire length by an elastic medium and subjected to 

a vertical loading that acts on the plane of symmetry of the cross section, where the distributed loads acting on the 

foundation can be admitted as evenly distributed, according to Fig. 1, besides being understood as 𝑅(𝑥) being the 

support reaction of the beam on an elastic base,  where the support base can be the ground, which provides the 

displacement reaction of the beam 𝑢(𝑥). 

Therefore, the reactions in the elastic medium can be expressed by Eq. (1), evidencing a constant of 

proportionality k, known as elastic constant, which is defined as the ratio between the support reaction 𝑅(𝑥) and 

the displacement reaction 𝑢(𝑥) along the length of the beam. In this way, you get: 

 

 𝑅(𝑥) = 𝑘. 𝑢(𝑥) . (1) 

 

 
Figure 1: Uniformly Loaded Beam on Elastic Base. 

 

Thus, it is understood that for each infinitesimal element 𝑑𝑥 there are elastic reaction effects 𝑑[𝑅(𝑥)], which 

cause the displacement 𝑑[𝑢(𝑥)] at each point of the beam. From where, the differential element 𝑑𝑥 is considered 

in equilibrium if the sum of vertical and deflector momentum efforts is null, and the following relationships are 

deduced when applying Eq. (1): 

 

 

ᅈᄻ

ᅈᅢ
= 𝑅(𝑥) − 𝑞(𝑥), 

 

 
ᅈᄻ

ᅈᅢ
= 𝑘𝑢(𝑥) − 𝑞(𝑥). 

(2) 

   

On the other hand, the sum of moments in the vertical is null, which is divided by 𝑑𝑥 results in: 

 
ᅈᄷ

ᅈᅢ
− (𝑄 + 𝑑𝑄) − 𝑞(𝑥).

ᅈᅢ

Ⴓ
+ 𝑟(𝑥).

ᅈᅢ

Ⴓ
= 0, 

 
ᅈᄷ

ᅈᅢ
− (𝑄 + 𝑑𝑄) + [𝑟(𝑥) − 𝑞(𝑥)]

ᅈᅢ

Ⴓ
= 0. 

(3) 

 

Now, replacing Eq. (2) in Eq. (3), the following result is reached: 

 
ᅈᄷ

ᅈᅢ
− 𝑄 −   𝑑𝑄 +

ᅈᄻ

ᅈᅢ
.

ᅈᅢ

Ⴓ
= 0, 

 
ᅈᄷ

ᅈᅢ
= 𝑄 +

ᅈᄻ

Ⴓ
= 𝑞(𝑥) →

ᅈᄷ

ᅈᅢ
= 𝑞(𝑥). 

(4) 

 

In fact, there is: 

 
ᅈ²ᅜႾᅢႿ

ᅈᅢ²
= −

ᄷ

ᄯᄳ
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ᅈ

ᅈᅢ
ԯ

ᅈᆭᅜ(ᅢ)

ᅈᅢᆭ
Ի =

ᅈ

ᅈᅢ
Ԗ−

ᅈ

ᅈᅢ

ᄷ
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Ԣ →

ᅈᆮᅜ(ᅢ)

ᅈᅢᆮ
= −

Ⴒ

ᄯᄳ

ᅈᆬᄷ
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ᅈᆮᅜ(ᅢ)

ᅈᅢᆮ
=

ᅈ²ᄷ

ᅈᅢ²
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(5) 

 

In addition, 

 



Analysis of beams on elastic base via variational methods Ibiapino et al. 

 

Vetor, Rio Grande, vol. 32, no. 1, pp. 31–41, 2022 34

ᅈᄻ

ᅈᅢ
=

ᅈᆬᄷ

ᅈᅢᆬ
= −𝐸𝐼

ᅈោᅜᆮ(ᅢ)ៅ

ᅈᅢᆮ
. 

 
(6) 

And since the sum of vertical forces is null, 

 

−𝐸𝐼
ᅈᆮᅜ(ᅢ)

ᅈᅢᆮ
= 𝑘. 𝑢 − 𝑞(𝑥) → 𝐸𝐼

ᅈᆮᅜ(ᅢ)

ᅈᅢᆮ
+ 𝑘. 𝑢 = 𝑞(𝑥). (7) 

 

Moreover, from the mathematical point of view, to solve the fourth-order differential equation defined by Eq. 

(7) it is necessary to consider the boundary conditions that govern it, being necessary to know the nature of the 

ends and the load applied on the beam, which in the case under study is a beam supported with uniformly 

distributed load. 

 

2.2 Analytical solution 
 
According to Santos and Lacerda [1], Eq. (7) is commonly referred to as one-dimensional equation of the beam on 

elastic base, where 𝑢 =  𝑢(𝑥) it is vertical displacement, 𝑞 =  𝑞(𝑥) is the external loading, 𝑘 is the spring constant 

associated with the elastic base, 𝐸 is the modulus of longitudinal elasticity, 𝐼 is the inertia of the cross section of 

the beam and 𝑥 is the spatial coordinate, the length of the beam.  

Assuming that the beam material is homogeneous, the inertia of the section is constant, the loading is evenly 

distributed, and the elastic base is constant and stable, it is possible to rewrite Eq. (7) as 

 
ᅈᆮᅜ(ᅢ)

ᅈᅢᆮ
+ 4Ԗ

ᅒ

Ⴕᄯᄳ
Ԣ. 𝑢 =

ᅘႾᅢႿ

ᄯᄳ
. (8) 

 

As can be seen, Eq. (8) is described in terms of constants and can be solved as a Linear Ordinary Differential 

Equation of Higher Order. By simplifying notation, the factor 
ᅒ

Ⴕᄯᄳ
 will be replaced by 𝜆. Therefore: 

 
ᅈោᅜᆮႾᅢႿៅ

ᅈᅢᆮ
+ 4𝜆Ⴕ𝑢(𝑥) =

ᅘႾᅢႿ

ᄯᄳ
→ 𝐸𝐼

ᅈោᅜᆮႾᅢႿៅ

ᅈᅢᆮ
+ 4𝜆Ⴕ𝑢(𝑥) = 𝑞(𝑥) , (9) 

 

where 

𝜆 = ٺ
ᅒ

ᄯᄳ

ᆮ . 

 

(10) 

Also, Eq. (9) can be expressed as follows: 

 

𝑢(𝑥) = 𝑢ᅇ(𝑥) + 𝑢ᅗ(𝑥), 

 

(11) 

where uc is the characteristic or homogeneous solution, and up the main or particular solution. The solution of 

equation (11) corresponds to the solution of the homogeneous equation, 

 
ᅈោᅜᆮႾᅢႿៅ

ᅈᅢᆮ
+ 4𝜆Ⴕ𝑢(𝑥) = 0. 

 

(12) 

In addition, Eq. (12) can be solved through a characteristic equation, 

 

𝑟Ⴕ + 4𝜆Ⴕ𝑢(𝑥) = 0. (13) 

 

Thus, it is possible to determine some results by applying the integration techniques for Eq. (8) and if reaching the 

following results: 

 

𝑟Ⴒ = 𝜆(1 + 𝑖), 𝑟Ⴓ = 𝜆(1 − 𝑖), 𝑟Ⴔ = 𝜆(−1 + 𝑖), 𝑟Ⴕ = 𝜆(−1 − 𝑖) (14) 

 

Therefore, the roots found in Eq. (14) correspond to the characteristic solution uc. Thus, 

 

𝑢ᅇ(𝑥) = 𝑒ᆊᅢ[𝐴 𝑐𝑜𝑠( 𝜆𝑥) + 𝐵 𝑠𝑖𝑛( 𝜆𝑥)] + 𝑒Ⴜᆊᅢ[𝐶 𝑐𝑜𝑠( 𝜆𝑥) + 𝐷 𝑠𝑖𝑛( 𝜆𝑥)]. 

 

(15) 



Analysis of beams on elastic base via variational methods Ibiapino et al. 

 

Vetor, Rio Grande, vol. 32, no. 1, pp. 31–41, 2022 35

In turn, the particular solution of the problem is obtained through a portion of the Eq. (9), which makes it a non-

homogeneous differential equation. Considering the values q, E and I constants, Eq. (8) classifies the solution of 

the equation as a constant of null parameters, that is, 

 

𝑢(𝑥) = 𝑥ᅚ(𝐴ᅔ𝑥ᅔ+. . . +𝐴Ⴒ𝑥 + 𝐴Ⴑ)𝑒ᅙᅚ. 

 

(16) 

As a condition of 𝑚 = 𝑟 = 𝑠 = 0, it is necessary to: 

 

𝑢ᅗ(𝑥) = 𝐴Ⴑ. (17) 

 

Rewriting the Eq. (10), one has: 

𝜆Ⴕ =
ᅒ

Ⴕᄯᄳ
. (18) 

 

Rewriting the Eq. (9) in terms of the 𝑢ᅗ(𝑥): 

 

𝑢ᅗ(𝑥) + 4𝜆Ⴕ ⋅ 𝑢ᅗ(𝑥) =
ᅘႾᅢႿ

ᄯᄳ
. (19) 

 

Considering 𝑢ᅗ(𝑥) = 0 and replacing Eqs. (17) and (18) in Eq. (19), the following are obtained: 

 

4𝐴Ⴑ𝜆Ⴕ =
ᅘႾᅢႿ

ᄯᄳ
→ 𝐴Ⴑ =

ᅘႾᅢႿ

Ⴕᆊᆮᄯᄳ
=

ᅘႾᅢႿ

Ⴕԗ
ቋ

ᆮረሬ
ԣᄯᄳ

=
ᅘႾᅢႿ

ᅒ
→ 𝑢ᅗ(𝑥) = 𝐴Ⴑ =

ᅘ

ᅒ
, (20) 

 

with 𝑞 = 𝑞(𝑥). 

Replacing Eqs. (15) and (20) in Eq. (11), one finally obtains the analytical solution of the proposed problem, 

which is given by: 

 

𝑢(𝑥) =
ᅘ

ᅒ
+ 𝑒ᆊᅢ[𝐴 𝑐𝑜𝑠( 𝜆𝑥) + 𝐵 𝑠𝑖𝑛( 𝜆𝑥)] + 𝑒Ⴜᆊᅢ[𝐶 𝑐𝑜𝑠( 𝜆𝑥) + 𝐷 𝑠𝑖𝑛( 𝜆𝑥)]. 

 

(21) 

The constants A, B, C and D are determined from the types of support of the beam analyzed, which delimit the 

respective boundary conditions of the analyzed problem. It is worth noting that the calculations of these constants 

come from the resolution of a system formed by 4 equations with 4 variables. 

The boundary conditions described for this problem are given by: 

 

𝑢(0) = 0, 𝑢(𝐿) = 0,
𝑑Ⴓ𝑢(0)

𝑑𝑥Ⴓ
= 0,

𝑑Ⴓ𝑢(𝐿)

𝑑𝑥Ⴓ
= 0 

 

(22) 

To impose these boundary conditions, it is necessary to calculate the second derivative of Eq. (21). Calculating the 

second derivative of the Eq. (21), we have: 

 

𝑑Ⴓ[𝑢(𝑥)]

𝑑𝑥
=

2𝜆Ⴓ[(−𝐷 + 𝐵𝑒Ⴓᆊᅢ) 𝑐𝑜𝑠( 𝜆𝑥) + (𝐶 − 𝐴𝑒Ⴓᆊᅢ) 𝑠𝑖𝑛( 𝑒Ⴓᆊᅢ)]

𝑒ᆊᅢ
 

 

(23) 

By resolving the system of four nonlinear equations, you can obtain the following definition for these constants: 

 

𝐴 = − Բ
𝑞(1 + 𝑒ᆊᄶ 𝑐𝑜𝑠( 𝜆𝐿))

𝑘(1 + 𝑒Ⴓᆊᄶ + 2𝑒ᆊᄶ 𝑐𝑜𝑠( 𝜆𝐿)
Ծ 

(24) 

 

𝐵 = − Բ
𝑒ᆊᄶ𝑞 𝑠𝑖𝑛( 𝜆𝐿))

𝑘 + 𝑒Ⴓᆊᄶ𝑘 + 2𝑒ᆊᄶ𝑘 𝑐𝑜𝑠( 𝜆𝐿)
Ծ 

(25) 

 

𝐶 = − Բ
𝑒ᆊᄶ𝑞(𝑒ᆊᄶ + 𝑒ᆊᄶ 𝑐𝑜𝑠( 𝜆𝐿))

𝑘(1 + 𝑒Ⴓᆊᄶ + 2𝑒ᆊᄶ 𝑐𝑜𝑠( 𝜆𝐿)
Ծ 

(26) 

 

𝐷 = − Բ
𝑒ᆊᄶ𝑞 𝑠𝑖𝑛( 𝜆𝐿))

𝑘 + 𝑒Ⴓᆊᄶ𝑘 + 2𝑒ᆊᄶ𝑘 𝑐𝑜𝑠( 𝜆𝐿)
Ծ 

(27) 
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Replacing the results represented by Eqs. (24), (25), (26) and (27) in Eq. (21), the transverse displacements 

𝑢(𝑥) obtained on a beam supported by elastic foundation, given by: 

 

𝑢(𝑥) =
𝑞[𝑐𝑜𝑠( 𝜆𝐿) + 𝑐𝑜𝑠ℎ( 𝜆𝐿) − 𝑐𝑜𝑠( 𝜆𝐿) 𝑐𝑜𝑠ℎ( 𝜆(𝐿 − 𝑥)) − 𝑐𝑜𝑠( 𝜆(𝐿 − 𝑥)) 𝑐𝑜𝑠ℎ( 𝜆𝐿)]

𝑘(𝑐𝑜𝑠( 𝜆𝐿) + 𝑐𝑜𝑠ℎ( 𝜆𝐿))
 

 

(28) 

Therefore, Eq. (28) is the analytical solution of Eq. (7) for a beam supported on an elastic foundation. 

 

2.3 Variational Methods 
 
Variational Methods allow you obtaining approximate solutions for a given boundary value problem. It is 

assumed that the interpolation functions considered are sufficiently regular, in the sense that the integration or 

derivation operations have meaning, limited exclusively to the case of linear operators.  

 
2.3.1 Weighted residue method 

 
Let U and V normed and complete spaces, that is, in each space is associated with a standard and every sequence 

uᅕᅕႽ Ⴒᆠ
 of elements uᅕ ∈ 𝑈 , such that ||uᅕ− uᅔ|| → 0, 𝑛 → ∞  (Cauchy sequence) always converges to an 

element uႱ of the same space. 

The following transformation is now defined: 

 

𝑆: 𝑈 → 𝑉 

(𝑢, 𝑣) → 𝑆(𝑢, 𝑣) = ∫ Ω𝑢𝑣𝑑𝜔, 

 

 

(29) 

which means that given an ordered pair (𝑢, 𝑣), where 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , the transformation results in a real 

number. 

Given a linear operator B and an element 𝑓 ∈ 𝑈 , we want to find the solution to the following linear problem 

𝐵𝑢 = 𝑓, where B can be the operator 𝐵 = Ԗ𝐸𝐴
ᅈ

ᅈᅢ
Ԣ or 𝐵 =  ∇. We say that it 𝑢 ∈ 𝑈  is the solution to the problem if 

it is found that 

𝑆(𝐵𝑢 − 𝑓, 𝑣) = 0, ∀𝑣 ∈ 𝑉 ⇒ ∫ Ω(𝐵𝑢 − 𝑓)𝑣𝑑Ω = 0, ∀𝑣 ∈ 𝑉. 

 

(30) 

According to Miranda [6], to obtain the approximate solution 𝑢ᅍ of u, the weighted residuals method proposes 

the following algorithm: 

 

1. Build a complete sequence ΦᅒᅒႽႲᆠᅕ
 of functions that are sufficiently regular and meet all boundary conditions; 

2. For every finite n, the set ΦᅒᅒႽႲᆠᅕ
 must be linearly independent, that is, this set of functions is the basis of 

space 𝑈 ᅍ = 𝑠𝑝𝑎𝑛{ΦႲ, ΦႳ, … , Φᅕ }; 

3. Take as u approximation the linear combination 𝑢ᅍ = ∑ 𝛼ᅐΦᅐ
ᅕ

ᅐႽႲ
, where the coefficients 𝛼ᅐ , 𝑗 = 1, … , 𝑛 will be 

determined later; 

4. Build a sequence {wᅒᅒႽႲᆠᅕ
}, such that 𝑉 ᅍ = 𝑠𝑝𝑎𝑛{wႲ, wႳ, … , wᅕ }; 

5. Calculate for finite n, the coefficients 𝛼ᅐ  so that the residue 𝑟ᅍ = 𝐵𝑢ᅍ − 𝑓 = ∑ 𝛼ᅐBΦᅐ − 𝑓
ᅕ

ᅐႽႲ
 satisfies 

 

𝑆(𝑟ᅍ, 𝑤ᅎ) = ∫ Ω(∑ 𝛼ᅐ𝐵𝜙ᄴ − 𝑓)𝑤ᅎ𝑑Ω = 0, ∀𝑤ᅎ ∈ 𝑉
ᅕ

ᅐႽႲ
. 

 

2.3.2 Placement Method 
 

This method is a particular case of the Weighted Residue Method, in which functions 𝑤ᅎ are functions 𝛿 −

𝐷𝑖𝑟𝑎𝑐 (𝛿ᅎ)  associated with points 𝑥ᅎ, with 𝑖 = 1,2, … , 𝑛  from Ω. This function has the following property: 

 
∫ ℎ(𝑥)𝛿(𝑥 − 𝑥ᅎ)ᅾ

𝑑Ω = ℎ(𝑥ᅎ). 

 

(31) 
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With this, to 𝑖 = 1,2, … , 𝑛, 𝛿ᅎ = 𝛿(𝑥 − 𝑥ᅎ) and 𝑢ᅍ = ∑ 𝛼ᅐΦᅐ
ᅕ

ᅐႽႲ
, the method becomes ,  

 
∫ 𝑟ᅍ𝛿ᅎᅾ

𝑑Ω = (𝐵𝑢ᅍ − 𝑓)|
ᅢቇ

= 0. 

 

(32) 

 
2.3.3   Sub-region method 
 
It is a particular case of the Weighted Residue Method, which seeks to zero the residual function in all sub-regions 

of the domain. Be Ωᅎ
ᅉ  a partition Ω  of such that ∪ Ωᅎ

ᅉ = Ω and Ωᅎ
ᅉ⋂ Ωᅐ

ᅉ = ∅, ∀𝑖, 𝑗. We define 𝑤ᅎ such that  

 

𝑤ᅎ(𝑥) = Չ
1 if 𝑥 ∈ Ωᅎ

ᅉ

0 if 𝑥 ∉ Ωᅎ
ᅉ. 

 

(33) 

With this, for  𝑖 = {1, 2, … , 𝑁}, the method becomes: 

 
∫ 𝑟ᅍ𝑤ᅎᅾ

𝑑Ω = ∫ 𝑟ᅍ𝑤ᅎᅾቇ
ቂ 𝑑Ωᅎ

ᅉ = ∫(𝐵𝑢ᅍ − 𝑓) 𝑑Ωᅎ
ᅉ = 0. 

 

(34) 

2.3.4 Least Squares Method 
 

The Least Squares Method resolves a constraint imposed by another Variational Method, the Ritz Method, which 

required differential operator B to be symmetrical and positive defined. To do this, you define the following 

internal product: 

 

⟨𝑢, 𝑣⟩ᄬᆠᄬ
= ∫ 𝐵𝑢𝐵𝑣

ᅾ
𝑑Ω ⇒ ‖𝑢‖

ᄬᆠᄬ
Ⴓ = ⟨𝑢, 𝑣⟩ᄬᆠᄬ

, 

 

where 𝐵 = Ԗ𝐸𝐴
ᅈ

ᅈᅢ
Ԣ is the differential operator and 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉. 

(35) 

Once this standard is defined, we can put the problem of finding the best approximation to the solution 𝑢Ⴑ of 

the problem 𝐵𝑢Ⴑ = 𝑓 in Ω  relation to the standard || . ||
ᄬᆠᄬ

 as being a problem of minimization of the functional, 

that is, 𝑢 minimizes the functional   

 

𝐽(𝑢) = ||𝑢 − 𝑢Ⴑ||²ᄬᆠᄬ ⇒ 𝐽(𝑢Ⴑ) = min 𝐽(𝑢). (36) 

Considering 

 

𝐽(𝑢) = ‖𝑢 − 𝑢Ⴑ‖Ⴓ = ⟨𝑢 − 𝑢Ⴑ, 𝑢 − 𝑢Ⴑ⟩
ᄬᆠᄬ

= ⟨𝑢, 𝑢⟩ᄬᆠᄬ
− 2⟨𝑢, 𝑢⟩ᄬᆠᄬ

+ ⟨𝑢Ⴑ, 𝑢Ⴑ⟩
ᄬᆠᄬ

 

       = ∫ 𝐵𝑢𝐵𝑢
ᅾ

𝑑Ω − 2 ∫ 𝐵𝑢𝐵𝑢Ⴑᅾ
𝑑Ω + ∫ 𝐵𝑢Ⴑ𝐵𝑢Ⴑᅾ

𝑑Ω, 

 

 

 

(37) 

and, as 𝑢Ⴑ it is the solution of the problem, we have: 

 

𝐽(𝑢) = 𝐵𝑢𝐵𝑢𝑑Ω − 2 𝐵𝑢𝑓ڣ
ᅾ

𝑑Ω + 𝑓𝑓ڣ
ᅾ

𝑑Ω 

       = ∫ (𝐵𝑢 − 𝑓)(𝐵𝑢 − 𝑓)
ᅾ

𝑑Ω = ∫ (𝐵𝑢 − 𝑓)
Ⴓ

ᅾ
𝑑Ω. 

 

 

(38) 

And, as the residual function is defined by 𝑟 = 𝐵𝑢 − 𝑓, the problem can be defined as minimizing the following 

functional: 

 

𝐽(𝑢) = ∫ 𝑟Ⴓ
ᅾ

𝑑Ω. 

 

 

(39) 

So to get the approximate solution, considering the coordinated functions in such a way that 𝑢ᅍ = ∑ 𝛼ᅐΦᅐ
ᅕ

ᅐႽႲ
 , 

where Φᅐ  it is regular enough for 𝐵Φᅐ  it to make sense. With this, we have to: 
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𝐽(𝑢ᅍ) = 𝐽(𝛼ᅐ) = ∫ 𝑟Ⴓ
ᅾ

𝑑Ω = ∫ (𝐵𝛷ᅐ𝛼ᅐ − 𝑓)
Ⴓ

ᅾ
𝑑Ω. 

 

(40) 

Therefore, the problem is to minimize the functional 𝐽ԕ𝛼ᅐԡ, that is, calculate the minimum of a functional 𝛼ᅐ   

variable, thus falling into the resolution of the following system of equations, to 𝑗 = {1,2, . . , 𝑛}:  

 

∫ 𝑟
ᆙᅙ

ᆙᆀ
ᆀ

𝑑Ω. 

 

(41) 

Therefore, the discrete function 𝑢
 that minimizes the functional 𝐽(𝑢) is given by 𝑢

= ∑ 𝛼Φ

ୀଵ  

 

2.4 Interpolation  functions 
 
The following are the basic solution functions that can be used to obtain an approximate numerical solution. 

 

2.4.1 Polynomial function 
 

The polynomial function used to obtain an approximation based on the methods adopted is of the type: 

 

𝜙ᅕ(𝑥) = 𝑥ᅕ(𝑥 − 1), ∀𝑛 ∈ {1,2, . . . , 𝑛}, 

 

(42) 

𝛷(𝑥) = 𝑥ᅕႻႳ(𝑥 − 𝐿)
ᅕႻႳ

. (43) 

  

The set of functions {Φᅎ}ᅎႽႲᆠႳᆠឿ ᆠᄸ
 is linearly independent and regular in the problem domain Ω. In addition, it 

satisfies the contour conditions defined by the problem: 

 

𝜙ᅕ(0) = 0ᅕ(0 − 1) = 0, ∀𝑛 ∈ {1,2, . . . , 𝑛}, (44) 

 

𝛷(𝐿) = 𝑥ᅕႻႳ(𝐿 − 𝐿)
ᅕႻႳ

= 0, ∀𝑛 ∈ {1,2, . . . , 𝑛}. 

 

(45) 

2.4.2 Trigonometric function 
 
The trigonometric function used to obtain an approximation based on the methods adopted is of the type: 

 

𝜙ᅕ(𝑥) = 𝑠𝑖𝑛Ԗ
ᆏ

Ⴓ
𝑥Ԣ

ᅕ
, ∀𝑛 ∈ {1,2, . . . , 𝑛}. (46) 

 

The set of functions {Φ}ୀଵ,ଶ,… ,ே is linearly independent and regular in the problem domain Ω. In addition, it 

satisfies the contour conditions defined by the problem: 

 

𝜙ᅕ(0) = 𝑠𝑖𝑛Ԗ
ᆏ

Ⴓ
0Ԣ

ᅕ
, ∀𝑛 ∈ {1,2, . . . , 𝑛}. (47) 

 

3 Results and Discussions 
 
The analysis of beams supported on elastic base, subject to the action of a uniformly distributed load was modeled 

through the application of finite element methods. The application of this technique took place through the 

implementation of the numerical methods already explained using the Python programming language, where the 

computational objects developed are associated with the processes produced at each stage of the formulation. 

Thus, through numerical simulations obtained by the Variational Methods of Placement (MC), Sub-regions 

(MS) and Least Squares (MMQ), we performed a comparison between the results obtained for the coefficients 𝛼. 

An important factor to be emphasized is that for the application of these numerical methods for the solution of 

Eq. (7) it is necessary to consider the length of the beam (L), the longitudinal modulus of elasticity (E), the inertia 

of the cross section (I), the external loading applied on the beam (q) and the spring coefficient (k). 
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Thus, based on research, it is possible to affirm that the EI ratio represents the bending stiffness of the beam 

while the k represents the stiffness of the foundation soil. Therefore, for the application of these numerical 

resolution methods described above, only two cases were considered among the existing possibilities: 

 

 1st Case: L = 1.0, I = 1.0, E = 1.0, q = F = 1000.0, k = 54.0 

 

In this case, the application of MEF in the analysis of the beam subject to the action of a distributed load (q) 

was calculated based on the application of 11 points distributed throughout its structure. Thus, the values 

obtained for the coefficients for each method are indicated in Table 1, and it is important to highlight that in the 

Least Squares Method a different base function was used from that used in the other two methods. 

 

Table 1: Comparison of the results obtained for the coefficient 𝛼. 

 

Placement Method Sub-region method Least Squares Method 

-0.124186043370565 -0.123437326372301 -0.61718657946408 

0.496744173511415 0.493749298277676 -1.33312309627824 

-0.837105924475265 -0.839373799829299 -1.62937278005176 

0.772713164958089 0.789998944021680 -12.7601386868480 

-12.0156101275190 -11.9701412936300 -35.1697972361481 

23.3228998518319 23.1996583392921 -41.6666575044702 

-18.3437668148348 -18.4669991651836 -25.3835459473802 

6.72831170299304 6.91654620489500 -85.0718847036956 

-78.5301384960302 -78.1553488355315 -78.1553435094945 

 

It was possible to identify that the Placement Methods and Sub-regions present a better approximation for the 

coefficients and when compared with the Least Squares Method variations were observed. Regarding the 

numerical and exact solutions of the problem, comparative graphs of the solutions for each Variational Method 

were plotted, and it is important to highlight that the interpolation function used in each method follows the 

characteristics already explained in item 2.4.1, being sufficiently regular and satisfying all boundary conditions.  

 

 
 

Figure 2: Comparison between analytical and numerical solution by placement method, sub-regions and least 

squares. 

 

It is important to highlight that the interpolation function used in each method is Eq. (42), except for the Least 

Squares Method that was used equation Φ(𝑥) =  (𝑥 − 𝐿)
ᅕ

. 

In Fig. 2 we have the numerical solutions for vertical displacement using the Placement Methods, Sub-regions 

and Least Squares Method compared with the analytical solution defined by Eq. (28) and its respective derivatives, 

and both variational methods present a good approximation when compared to the analytical solution.  

 

 2nd Case: L = 1.0, I*E = 4.0 × 106, q = F = 1000.0, k = 0.5 

 

In this case, numerical simulations showed significant variations compared to the 1st case. Such variations 

have to do with the changes in the parameters K, E and I, which can be seen in the graphs shown in Fig. 3. 
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The values obtained for the coefficients in each method used are indicated in Table 2 below. The numerical 

solution was obtained based on two interpolation functions defined in Eqs. (43) and (46), whose characteristics 

have already been explained in items 2.4.1 and 2.4.2. In addition, they are regular and meet the boundary 

conditions imposed on the problem.  

 

Table 2: Comparison of the results obtained for the coefficient 𝛼. 

 

Placement Method Sub-region method Least Squares Method 

2.07557912998504e-9 4.68081952392329e-5 -1.11575743116935e-8 

-4.15115825997007e-9 0.000282219376581574 1.38882176769011e-8 

0.0 -0.000452054074702820 4.17821534561348e-8 

0.0 0.000906617102950374 -1.11575743116935e-7 

-9.22808110718594e-8 0.000447871191183831 0.0 

3.37579831276531e-6 2.083333333313307e-5 3.36198734119546e-6 

 

When analyzing the data obtained in Table 2, it was not possible to identify which of the methods present a 

better approximation to the coefficients, due to the inconstancy of the results obtained. 

 

 
Figures 3: Numerical Solution by Placement Method, Sub-regions and Least Squares. 

 

Observing Fig. 3, it is perceived that the interpolation function that best approximates the analytical solution is 

the trigonometric function defined in Eq. (46). We found that the Variational Methods present a good 

approximate solution to the problem under study, when compared to the analytical solution. The Methods of Sub-

regions and Least Squares provide the best approximation for displacement, and it is important to highlight that 

the variation of parameters: spring coefficient (k), applied load (q), longitudinal elasticity modulus (E), cross-

sectional inertia (I) and spatial coordinate x, directly influence the solution, resulting in a better or worse result for 

the type of structure researched.  

In addition, there is the question of the proposal of the discretized space model, to which the condition of 

loading application was imposed on points equally spaced along the beam structure supported on the elastic base. 

All these points are relevant to cross-sectional deformations, and are therefore indispensable for the dimensioning 

of such structure. 

Thus, it is concluded that the results obtained with the Variational Methods and MEF for displacement values 

in two-set beams and elastic base were satisfactory, and that the method can be used in analyses of other problems 

frequently encountered in engineering. 

 

4 Conclusions 
 
In this work, a brief description of the main methodologies used in the resolution of beams in elastic foundation 

was carried out, in addition to a case study, where the results obtained for two application examples are exposed.  

These types of problems worked occur with a certain frequency in the area of Civil Engineering, it is important 

to highlight that the quantities involved in the characterization of the behavior of these structural elements - 

displacements, deformations and efforts make up the descriptive mathematical model of such structures.  
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However, for the cases addressed, in the differential equation that governs the behavior of this type of 

structure, an additional term emerges that is associated with the vertical reaction exerted by the foundation on the 

beam and considering the difficulty associated with obtaining an analytical solution for the differential equation, 

“numerical tools” methods were described and applied that allow the achievement of approximate solutions.  

These techniques are conceptually much simpler and although they only allow us to get an approximation, 

this approach can be as good as you want and from a certain limit is confused in practical terms with the 

analytical solution of the problem itself. With this, the analysis developed for the case of the beam supported on 

elastic base subject to the action of a uniformly distributed load occurred with the application of the Finite 

Element Method.  

From the analysis of Figures 2 and 3, it is perceived that good results were obtained from the perspective of the 

variational methods and Finite Element Method, from the calculation of coefficients to the displacements in 

beams two-set on an elastic basis. 

Thus, starting from this formulation, other problems frequently encountered in engineering can be analyzed, 

such as continuous beams and dynamic analysis of beams. 
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